M3

For inductive, 1Vpp and TTL probes

USER'S MANUAL

Firmware 3.0

Metro 80 impasse des chapotines ZAE Chez Merlin F-74420 St-André de Boëge France +33 (0) 450 39 08 49 Fax +33 (0) 450 39 08 33 web www.metro-fr.com

E-mail info@metro-fr.com

1. TABLE OF CONTENTS

1.	TABLE OF CONTENTS	2
2.		4
3.	INTRODUCTION	5
	3.1. PRODUCT PRESENTATION	5
	3.2. VERSIONS	
	3.3. CHARACTERISTICS	6
	3.3.1. MAIN TECHNICAL CHARACTERISTICS	6
	3.3.2. DIMENSION AND INSTALLATION	7
	3.3.3. CONTENTS OF THE PACKAGING	
	3.3.4. OPTIONS	
	3.3.5. CONNECTORS	
	3.3.5.1. VERSION FOR INDUCTIVE PROBES	13
	3.3.5.2. VERSION FOR INCREMENTAL PROBES AND ENCODERS	
	3.3.6. RS232 COMMUNICATION PORT	
	3.3.7. MINI-USB CONNECTOR	
	3.3.8. THE 24VDC CONNECTOR	
	3.3.9. THE USB STICK CONNECTOR	
	3.3.10. THE FOOTSWITCH CONNECTOR	
4.	GRAPHICAL INTERFACE	
	4.1. 2 MAIN PARTS	— 17
	4.2. GENERALITIES	
	4.3. CONFIGURATION WINDOWS	21
	4.4. VIRTUAL KEYBOARD	
5.	CONFIGURATION OF THE DEVICE AND THE MEASURE	
	5.1. DEFINITION	 24
	5.1.1. PART 1	
	5.1.2. PART 2	29
	5.1.3. PART 3, CLASS	
	5.1.4. PART 4, CONTROL LIMIT	
	5.2. DISPLAY	
	5.3. SETUP	35
	5.3.1. GENERALITIES	36
	5.3.2. INDUCTIVE PROBE	
	5.3.3. HEIDENHAIN PROBE (11µA OR VCC)	
	5.3.4. TTL PROBE WITH HEINDEHAIN PINOUT	38
	5.3.5. M-BUS MODULES	
	5.3.6. AIR GAGE MB-AG MODULE	
	5.4. CONFIGURATION	49
	5.5. LOCKING	52
	5.6. MEASURE	
6.		
	MEASURING SCREEN	55
	6.2. CHOICE OF THE NEEDLE INDICATOR STYLE	58
	6.3. TEMPORARY DYNAMIC MODE	
	6.4. DISPLAY MODE WITHOUT TOLERANCE	
7.	USB COMMUNICATION	61

8. RS232 COMMUNICATION	63
8.1. COMMANDS	63
8.1.1. GENERALITIES	63
8.1.2. COMMAND LIST	64
8.1.2.1. WINDOW PART	64
8.1.2.2. WINDOW DISPLAY	65
8.1.2.3. WINDOW CONFIGURATION	
8.1.2.4. WINDOW « LOCK »	
8.1.2.5. MEASURING SCREEN	66
9. DATA EXPORT ON USB KEYS	
9.1. STANDARD MODE :	67
9.2. ADVANCED MODE :	
10. CONFIGURATION OF THE UNIT WITH QR CODES	
11. RTU MODBUS protocol	
12. OPTIONAL M-BUS MODULES	73
12.1. MB-IO MODULE (SEE ALSO CHAP 5.3.5)	73
12.2. MB-RL MODULE	76
12.3. MB-TP MODULE – FOR TEMPERATURE COMPENSATION	79
13. FACTORY RESET	84
14. FIRMWARE UPDATE	85
15. EXEMPLES OF PROBE COMBINATIONS	87
15.1. SIMPLE MEASUREMENTS WITH ONE PROBE	
15.2 COMBINED MEASUREMENTS WITH TWO PROBES	87

2. FOREWORDS

ONE YEAR LIMITED GUARANTEE

MANUFACTURER'S RESPONSIBILITY

SPARE PARTS AND LABOUR.

The manufacturer commits himself to pay for repair or replacement costs (labour costs included) during a period of one year as from the date the guarantee came into force. The spare parts can be new or renovated and are guaranteed until the end of the initial guarantee period.

FIRST END-USER COVERAGE.

This guarantee applies only to the first end-user of the product and is not assignable to any other subsequent purchaser or user.

RESTRICTIONS.

Any accessory or expansion item not included in the original factory packaging is not guaranteed.

The present guarantee does not cover: installation or repair costs, damages resulting from circumstances beyond the manufacturer's control like damages following acts of God, misuse, or careless mistake from the user, damages during the transport or due to a wrong installation, use or application, such as any material damage caused by the use of non supplied products, components or accessories. It also does not cover products modified without any written approval from the manufacturer, including electrical or mechanical modification, removal of serial numbers or of the manufacturer's trademarks or of any other identification.

THE SOLE RECOURSE UNDER THIS GUARANTEE SHALL BE THE REPAIR OR THE REPLACEMENT OF DEFECTIVE PARTS AS INDICATED ABOVE. UNDER NO CIRCUMSTANCES THE MANUFACTURER CAN BE HELD LIABLE FOR INDIRECT OR SPECIAL DAMAGES OR FOR DAMAGES RESULTING FROM THE USE OF THE PRODUCT, INCLUDING ANY LOSS OF DATA, BUSINESS OR PROFIT, AND WHETHER THESE DAMAGES CAN BE FORESEEN OR NOT AND WHETER THEY ARE BASED ON A GUARANTEE VIOLATION OR NOT.

THE PRESENT GUARANTEE REPLACES ANY OTHER EXPRESSED OR IMPLIED GUARANTEE INCLUDING BUT NOT LIMITED TO ANY GUARANTEE OF MARKETING OR ADEQUACY FOR A PARTICULAR USE; AND ALL THESE GUARANTEES ARE EXPRESSLY EXCLUDED AND CANCELLED.

WARNING

The information contained in this booklet can be changed without notice.

The manufacturer makes no warranty whatsoever with respect to the warranties of commercial quality of this product or its suitability to a particular use.

The manufacturer is not responsible for mistakes that could be found in this handbook and also for direct or indirect damage resulting from the equipment, its performances and the use of this product.

It is the responsibility of the user to verify the calibration of the display before measuring and it is advised to check periodically the calibration and measurement performance.

CLEANING

Use a soft cotton cloth slightly soaked with an ethyl alcohol based product. **DO NOT USE** the following products: acetone, benzene, toluene and halogens hydrocarbons.

3. INTRODUCTION

3.1. PRODUCT PRESENTATION

The M3 display unit allows making dimensional control using 1 or 2 probes.

It is possible to make simple measurement (with one probe), or combined measurement (with 2 probes): sums or differences. It is possible to display 1 or 2 characteristics on the screen and can make static measurement or dynamic (Max, Min, Max-Min...)

The M3 can be connected to a PC thanks to its RS232 or USB connection.

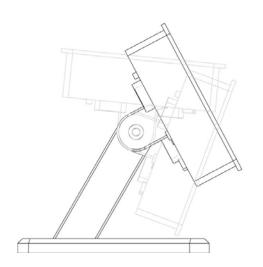
A footswitch can be connected in order to transfer measurements.

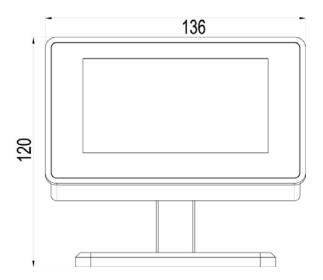
3.2. VERSIONS

The following probes can be connected

M3 Reference	Description
13000	2 x TTL probe or encoder: Direct connection of Heidenhain and through and adaptor for Magnescale (DK series) and Mitutoyo (LG series)
13010	2 x inductive probes from Metro
13020	2 x incremental probes or encoder from

	Heidenhain with a 11µA or 1Vpp output
1301T	2 inductive probe with a Tesa
	compatibility
1301M	2 x inductive probe from Mahr


3.3. CHARACTERISTICS


3.3.1. Main technical characteristics

- TFT colour touch screen display 4,3", resolution 480x272.
- Static or dynamic measurements (Max, Min, Max-Min, Average, Median)
- Analogue or digital display
- 2 measurement configurations (2 characteristics)
- Possibility to select automatically the characteristic by moving a probe or by pressing a key.
- Relative or absolute display by pressing a key
- Display resolution (from 1 to 5 decimals)
- Metric (mm or µm) or Imperial (Inches) measurement
- RS232 port for communication with a PC
- USB port for communication and/or power supply
- Optional connection of I/O module
- Measurement transfer by pressing a key, footswitch input or retro-command on the RS232 port.
- Operating temperature : : +15°C to +30°C
- Power supply from 85 to 265 VAC by using the supplied main transformer (or by connecting it directly on your PC USB port.
- Relative humidity: maximum 80%
- Dimensions: width 136 mm, height 120 mm, depth 105 mm
- Mass: 600 grams (700g with the power supply)

3.3.2. Dimension and installation

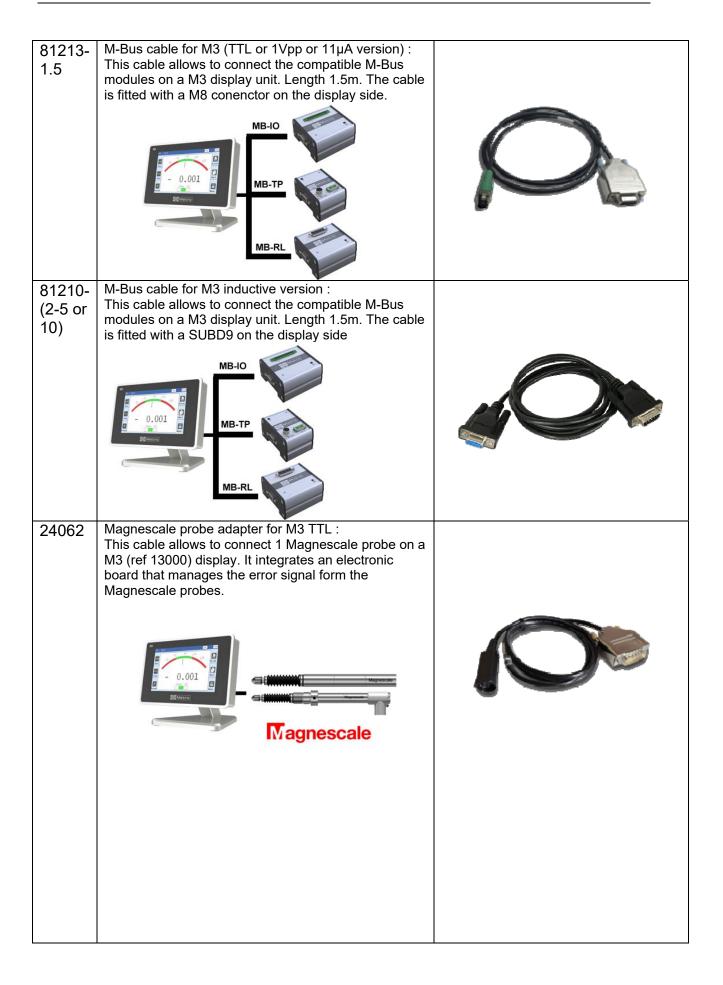
The M3 is fitted with 4 thread M5 allowing to attach it. To access to these thread it is necessary to remove the 4 antiskid plastic parts.

It is also possible to panel mount the display, with the accessory ref ACS-AFF-001. Be careful not to use longer screw than M4*16.

3.3.3. Contents of the packaging

The M3 package includes:

- 1 M3 display mounted on a stand
- 1 USB cable, (length =1.8m) for power supply and/or data transfer
- 1 USB main adaptor for the display power supply. The M3 can also be powered by a computer when connected to it with the USB.


3.3.4. Options

Metro Reference	Description	Picture
18020	Footswitch: This footswitch with a robust construction can be configured in different ways: preset, measurement transmission, start dynamic measurement etc	
18022	Handswitch This footswitch with a robust construction can be configured in different ways: preset, measurement transmission, start dynamic measurement etc	
ACS-AFF- 001	Accessory for panel mounting. To be installed instead of the stand.	
MB-IO	This M-Bus module is fitted with 8 input/outputs isolated with opto couplers allowing to get additional functionalities, for example: output for Go/no Go, input for preset or start dynamic measurement The M-Bus modules are mounted on an aluminum profile allowing to mount them on a standard DIN rail. Up to 4 modules can be mounted	

14D DI	The section of MD DI and deal in Eq. (1) and 0	Ī
MB-RL	The optional MB-RL module is fitted with 2 independent relays min and max, free of potential that indicate the position of the measure according to the part tolerances. The module is also fitted with 6 inputs allowing to remote control the display. This MB-RL module is wired exactly like the #24136 optional board for Monocote displays. It allows then to replace a Monocote by a M3 without changing the machine/plc wiring.	

М3

45173	RS232/USB cable converter: This cable allows a M3 display to communicate with a computer. It creates a virtual COM port on the computer. It is delivered with a driver on a CD. Rs232 USB (virtual COM port)	March Services and
24061	This cable allows to connect 1 Mitutoyo LG probe on a M3 (ref 13000) display.	
ACS- AFF- 002 + 45179	Ticket printer Print the displayed values from the M1/M3 Require a cable ref 45179 for connecting to the M1/M3	
ACS- AFF- 003	QR code reader for Metro displays. 2 main functions: - Allow to send a configuration on the display (part definition, tolerance, display type, etc) - Send a Manufacturing order number. The export file will take the name of the number entered.	Operation

3.3.5. Connectors

3.3.5.1. Version for inductive probes

USB connector for USB stick or QR Code readers

On/Off switch (press 2s. for shutting down). Disabled if the unit is powered by the 24VDC connector

2 inputs for inductive probes. Be careful to use a compatible probe depending on your product reference.

To connect M-BUS modules (optional)

RS232 connector for connection to a PC or PLC

Multi-function footswitch connector

Mini-USB connector for power supply and measurement transfer to a PC

24 VDC power supply. If you choose this connector to power the display, the ON-OFF switch will be deactivated. This power supply is not available on the Mahr and Marposs devices

Note: Metro provides different version for M3 for inductive probes: for Tesa compatible probes, for Mahr, for Metro or for Marposs. Each of these probes has the same DIN-5 connector but is different internally. It is therefore necessary to use the adapted probe depending on your product reference.

You can contact Metro or distributors for any advice about this point.

3.3.5.2. Version for incremental probes and encoders

USB connector for USB stick or QR Code readers

On/Off switch (press 2s. for shutting down)

2 inputs for incremental probes with the Heidenhain pinout. For Mitutoyo LG or Magnescale DK, please use an adapter

RS232 connector for connection to a PC

Multi-function footswitch connector

Mini-USB connector for power supply and measurement transfer to a PC

To connect M-Bus modules (optional)

24 VDC power supply. If you choose this connector to power the display, the ON-OFF switch will be deactivated. This power supply is not available on the Mahr and Marposs devices

Important Note : 2 versions of this unit are available. For sinewave $11\mu A$ and 1Vpp probes (ref 13020), and for TTL probes (ref 13000).

Please make sure that you are using the right version of M3 depending on the probe you use.

The TTL version allows to connect the Magnescale DK and Mitutoyo LG gages with a cable adapter.

It is possible to connect rotary encoders from different brands. You can contact Metro for any question about this subject.

3.3.6. RS232 communication port

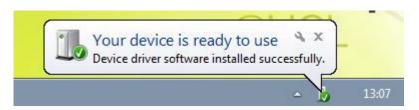
The M3 is fitted with a RS232 port. It allows linking the M3 to PC or an external system. The configuration is as following

9600 bauds, 8 bits, 1 stop bit, no parity

CONNECTOR PINOUT

It is fitted with a SUBD 9 pins female connector.

Pin	Signal	Direction	Description
1			Not used
2	RX	Input	Reception of data
3	TX	Output	Transfer of data
4	IN1	Input	Do no use. Only for firmware update
5	Gnd	1	Ground
6			Not used
7	IN2	Input	Do no use. Only for firmware update
8 &9			Not used


3.3.7. MINI-USB connector

The mini-USB connector has 2 functions

- 1. Power supply through a wall mounted transformer. This transformer supplies a regulated 5V/1A DC voltage.
- 2. Measurement transmission. If you connect your M3 to a PC, the PC will detect and install automatically the M3 as a standard USB keyboard with the standard drivers of your operating system (Windows, Mac OS etc..). When you will send the measurement, the value will be written on your PC screen where your cursor is, in the same way as it would have been typed with a keyboard.

Message that appears when the M1/M3 has been correctly installed:

3.3.8. The 24VDC connector

It is advised to use this power supply when the M3 is panel mounted.

Using this power supply instead of the mini-USB will deactivate the ON-OFF switch. Therefore, when the M3 is powered, it will start automatically.

3.3.9. The USB stick connector

This connector allows to connect USB sticks and USB bar code readers (see chapter 12). It is possible to connect both at the same time using a USB hub.

It is possible to save measurements on a CSV file.

In this case the display must be set the following way:

Configuration → Transfer → USB key

Then once the user either press on the « PRINT » button of the measuring screen or on the footswitch, one line will be added on the CSV file. (a « output.csv » file is created when the operator transfers the data for the first time).

When the USB stick has been correctly detected, a USB logo will appear on top bar. If the USB stick is not connected when the operator transfers the measurement, an error message will pop up.

USB sticks with partitions are not supported.

3.3.10. The footswitch connector

This connector is used to connect the Metro footswitch ref 18020. This is a JACK MONO 3.5mm (dry contact)

The footswitch can then be used for several functions: please refer yourself to the chapter 5.4 for further information.

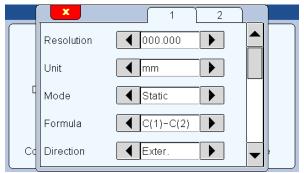
- Transfert the measurement
- Preset
- Start a dynamic measurement
- Zero
- Change the displayed part reference
- Hold (freezes the display) In this case, the button "CLEAR" in the measuring

screen becomes yellow: Clear

- Screenshot: require to have a footswitch connected + a USB stick inserted. It creates a BMP file (screenshot) in the USB stick.

4. GRAPHICAL INTERFACE

The graphical interface of your M3 has been designed to be easy to use and intuitive. This section gives you a preview of the different screens and commands available

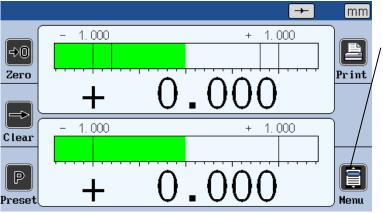

4.1. 2 MAIN PARTS

The graphical interface of your M3 is divided in 2 main parts:

1. A part that allows configuring the device and the measure. It consists of an icon desktop with a few windows.

icon desktop

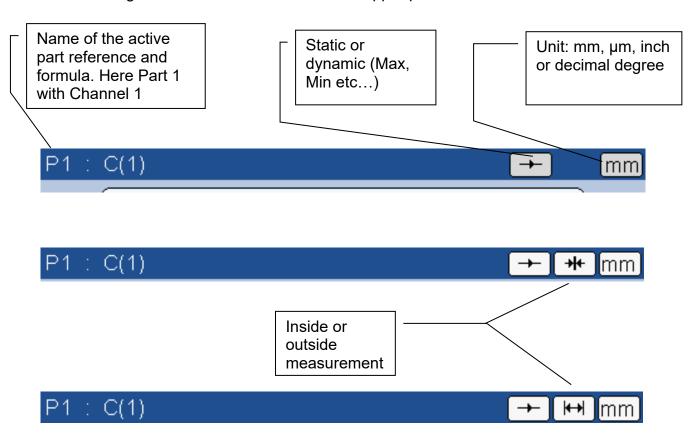
icon desktop with configuration window



The second part (measuring screen) is called by pressing the

lesure button

2. This part allows to see the measurement result and to use them. The M3 starts on this screen. For reaching the configuration screens, press on the

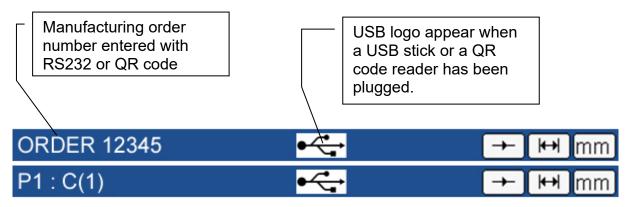

Example of measuring screen

Press on this icon to reach the main icon desktop to configure your device М3

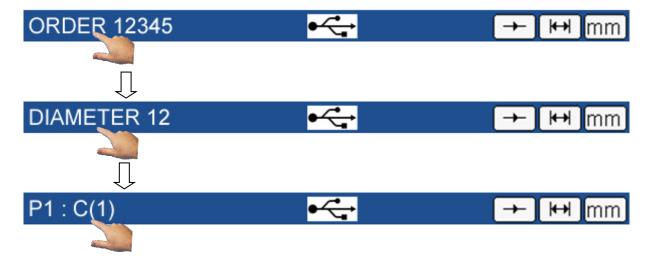
4.2. GENERALITIES

The following information can be seen on the upper part of the screen.

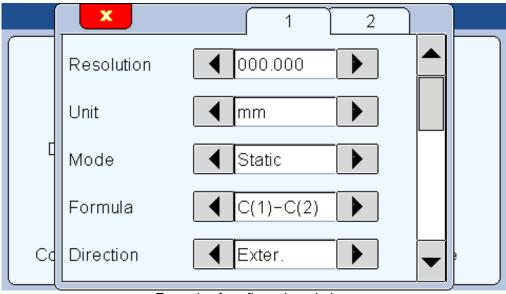
Advanced functions:


It is possible to enter a characteristic name, either with an RS232 command, or by scanning a QR code.

After this, the characteristic name is written instead of P1 : C(1).



In the same way it is also possible to input a manufacturer order either with an RS232 command, or by scanning a QR code :


Note: When either a characteristic name or a manufacturing order name has been entered, only 1 information appear on the blue bar. However, the information display can be changed by touching the area:

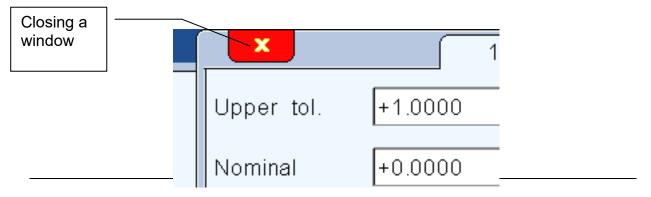
4.3. CONFIGURATION WINDOWS

Configuration windows opens after pressing on the icons of the icon desktop

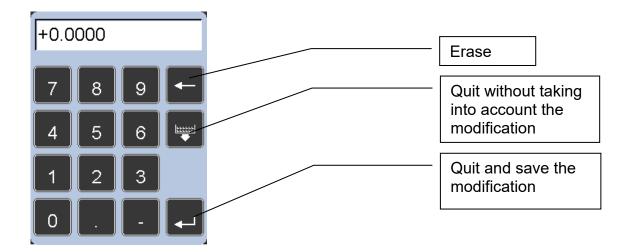
Example of configuration windows

Data are typed by different ways and are saved after validating while quitting the window.

Here after are the different ways to input data:


 Multiple selection box. Press on the black arrows to change the pre-defined value.

• Edit box. A virtual keyboard appears after clicking on the edit box.

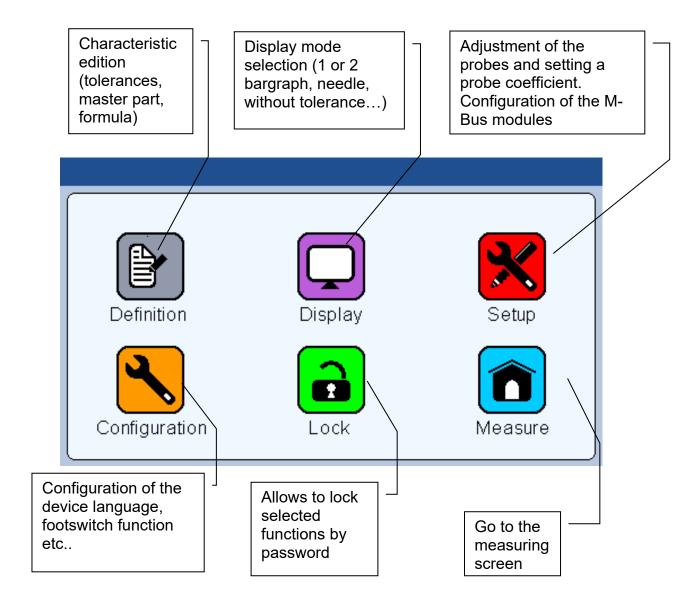


 Closing a window: All the windows can be closed by clicking on the white cross on a red background on the top left corner on each window.

4.4. VIRTUAL KEYBOARD

5. CONFIGURATION OF THE DEVICE AND THE MEASURE

This section describes the different windows that are accessible from the icon desktop.

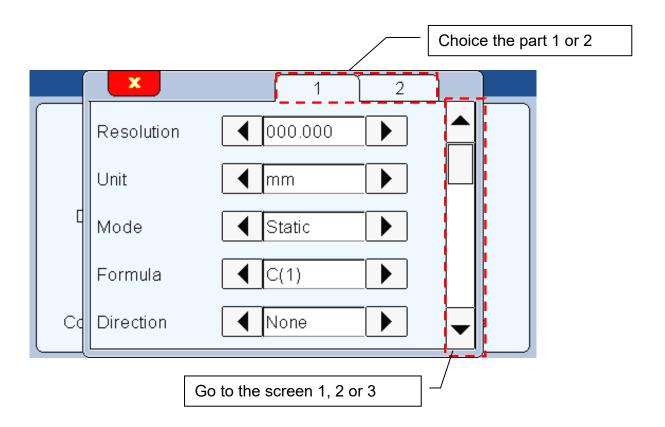

If you are on the measuring screen, you can reach the icon desktop by clinking on the

button.

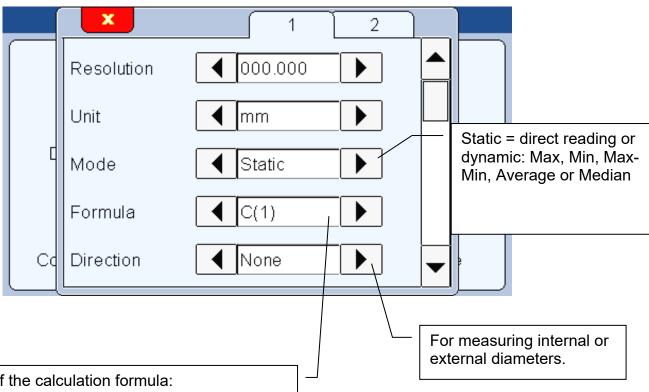
Your M3 can be entirely configured (language, communication etc...) from this window.

The measure (tolerances, characteristics etc...) is also configured from this window.

The 6 following sections describe the 6 icons of this screen.


5.1. **DEFINITION**

After clicking on this icon, the bellow window appears:


It gives the possibility to define the tolerances, the master, and the nominal value of the characteristic, the resolution of each of the 2 available measurement configurations.

→ This window is divided in 2 parts for the configuration of the 2 measurement configurations.

5.1.1. Part 1

Choice of the calculation formula:

- C(1)
- C(2)
- C(1) + C(2)
- C(1) C(2)
- •-C(1)
- •-C(2)
- •-C(1)+C(2)
- 3 points C(1) or C(2) (for a special 3 points measuring table, contact Metro for further info)

« C » means « Channel »

It is possible to give a coefficient for each probe from the menu

Resolution

000.000 = micron00.0000 = 0.1 micron

Unit

mm: millimeters

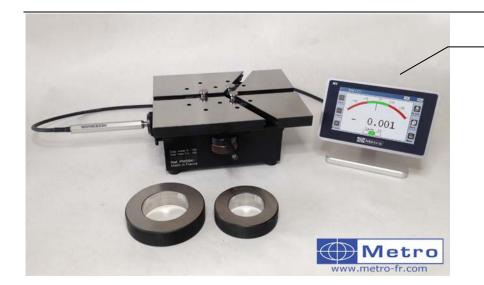
In : inches Um = Microns

Deg = decimal degrees (automatic choice when the formula is set as Taper)

DMS = Degrees / Minutes / Seconds

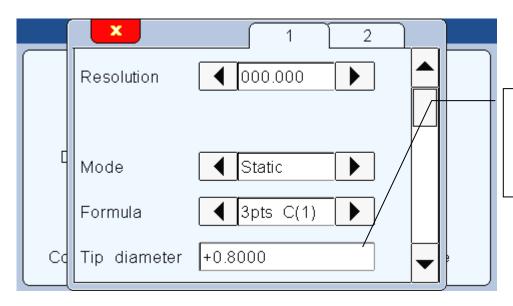
Mode

Static = direct reading: The display is refreshed together with the probe is moving. Dynamic: The following mode starts after pressing on the "clear" button of the measuring screen (or through a I/O or footswitch command)


- Max
- Min
- Max-Min
- Average
- Median = (max+min)/2

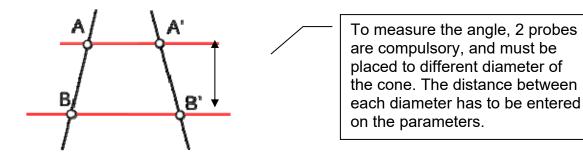
Calcul formula

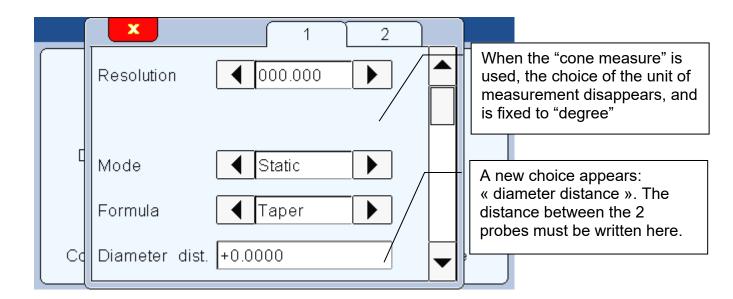
Calcul formula: 3 points (only on the Heidenhain)


This mode allows to measure internal or external diameter of a cylindrical part. The part is blocked on a 3 points table.

On this table 3 points, 2 points are fixes and the third one moves to constrain the part and measure its diameter

For this kind of measurement, a new option appears: "Tip diameter"




The size (diameter) of the tip must be written here in order to calculate correctly the diameters of the part

Calcul formula: Cone

This mode is used to calculate an angle of a cone.

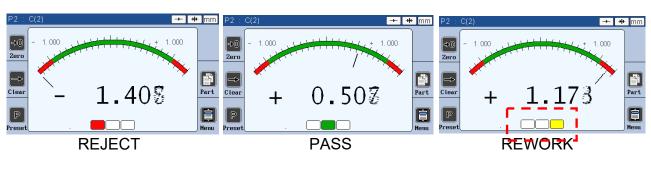
Direction of measurement

Direction: none

With this direction of measurement, any measure outside of the tolerance limits will appears in red. All the good measure will be in green.

Direction: Internal diameter

The direction of measurement is used to measure internal or external diameters. The difference between these two modes is that according to the part, the part might still be rework. For example, the size of a bore in a part: if the bore is too big, there is no


way to rework the characteristics of the bore to make it fit in the tolerance interval. However, if the bore is too small, it can still be increased, and then the part could fit in the tolerance interval. In this case, the internal diameter is used, as on the pictures bellow.

On the measuring screen, a yellow indicator shows when the part is too small (so possible to rework), and a red indicator if the part is too big (rejected)

Direction: External diameter

The opposite phenomena happens for the external diameter.

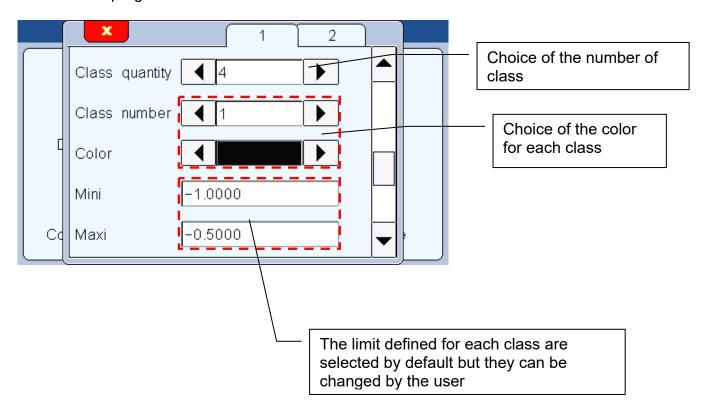
5.1.2. Part 2

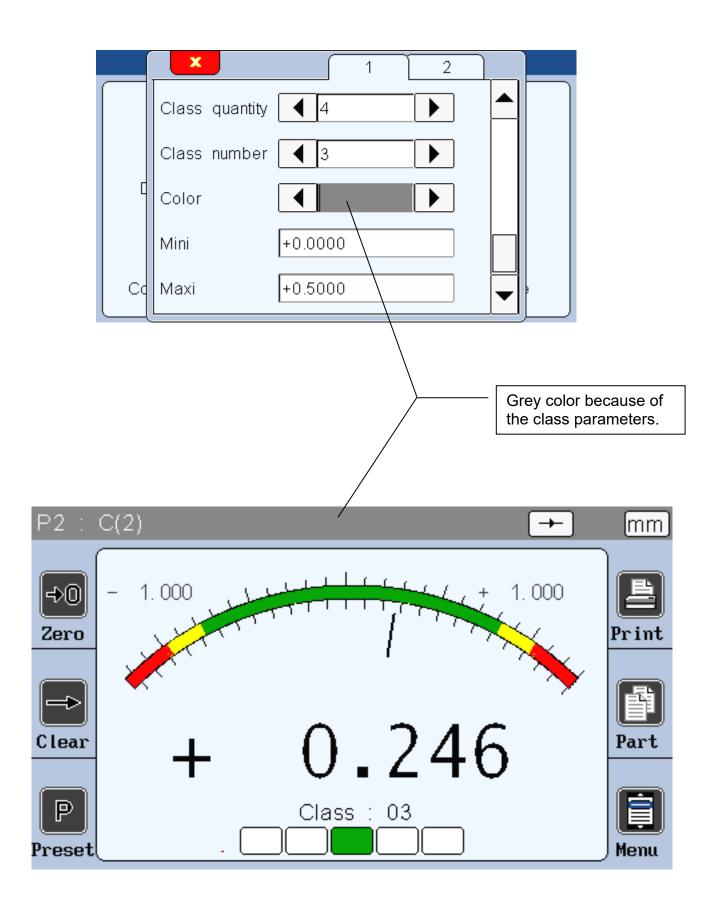
This screen allows to set tolerances and the characteristics (nominal and master) Just press on the corresponding edit box to input the needed values

The tolerances must be set relatively from the nominal value

Example: diameter 8mm +/-20µm

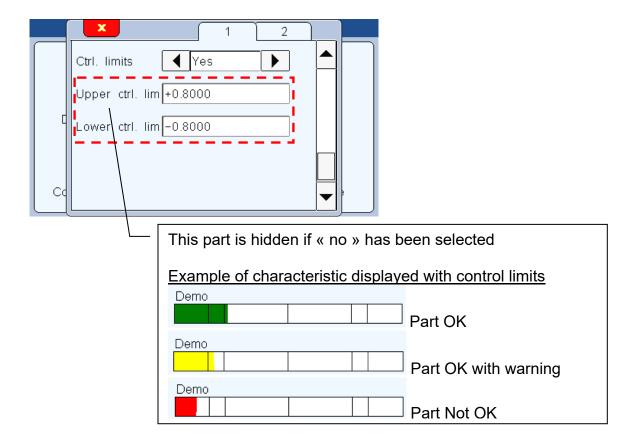
→ upper tol : 0.020
 → nominal : 8
 → lower tol :-0.020


→ master : real value according to the calibration certificate.


5.1.3. Part 3, class

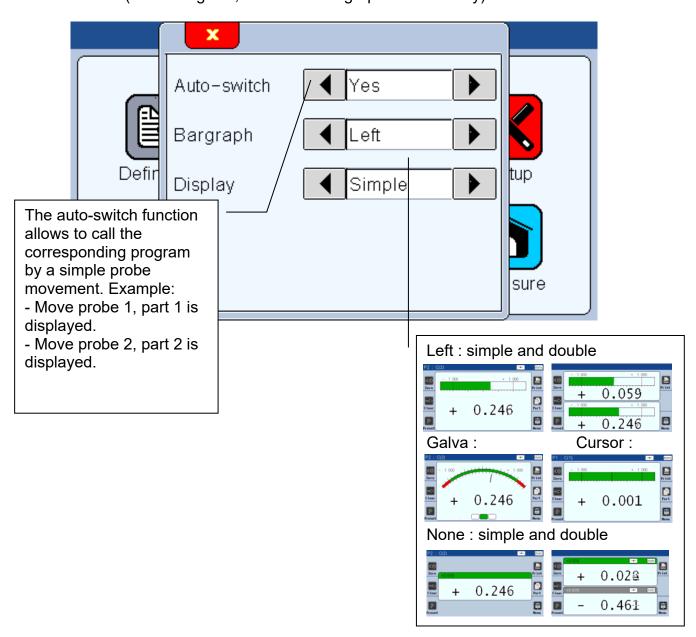
This screen allows to set up a sorting of the part according to their size. Up to 16 class can be programed

The class has an important utility, because it allows the user to sort the parts according to their position in the tolerance interval. The top bar of the display, which is normally blue is grey on the picture bellow, because grey is the color which was defined for this interval of measurement. Thanks to the color code, the user can easily sort the parts according to the color of the display.

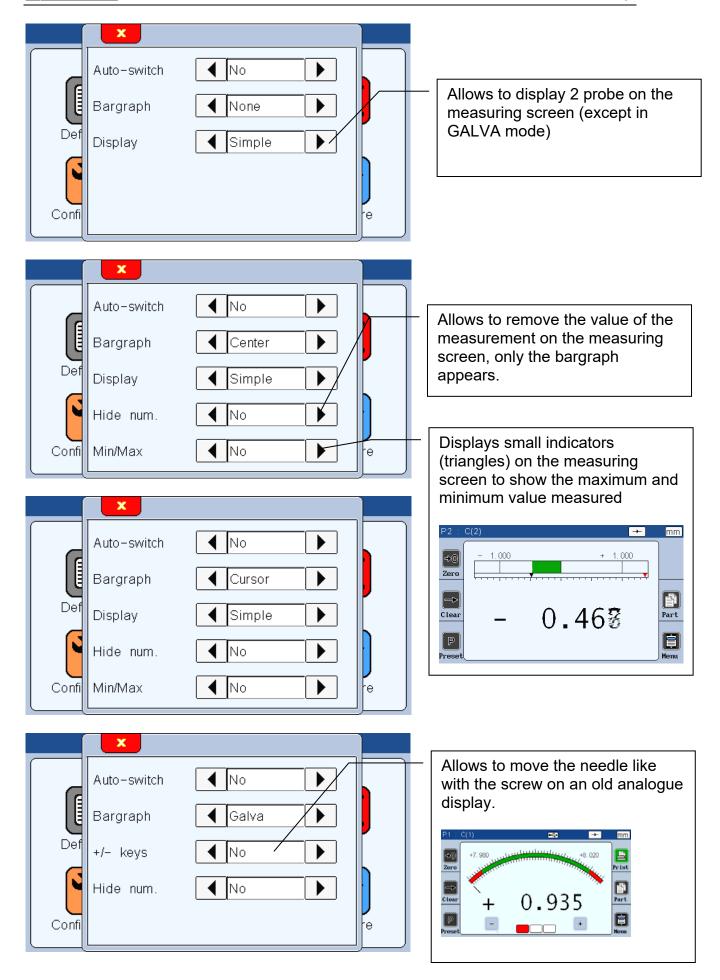


5.1.4. Part 4, control limit

This screen allows to display or not the control limits (warnings) and to define them. Control limits are warnings that inform the user if the measure becomes too close to the tolerances limits. (Yellow colour on the bargraph)

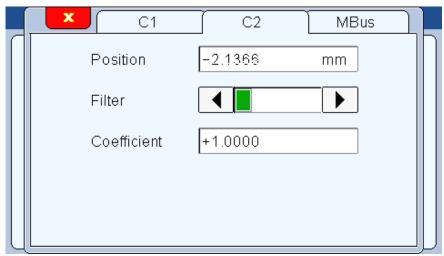


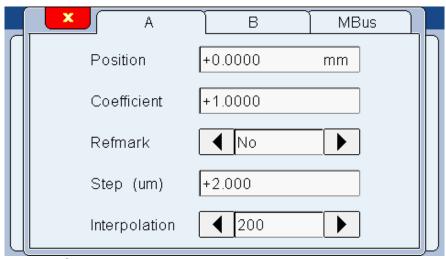
5.2. DISPLAY



After clicking on this button, the below window appears.

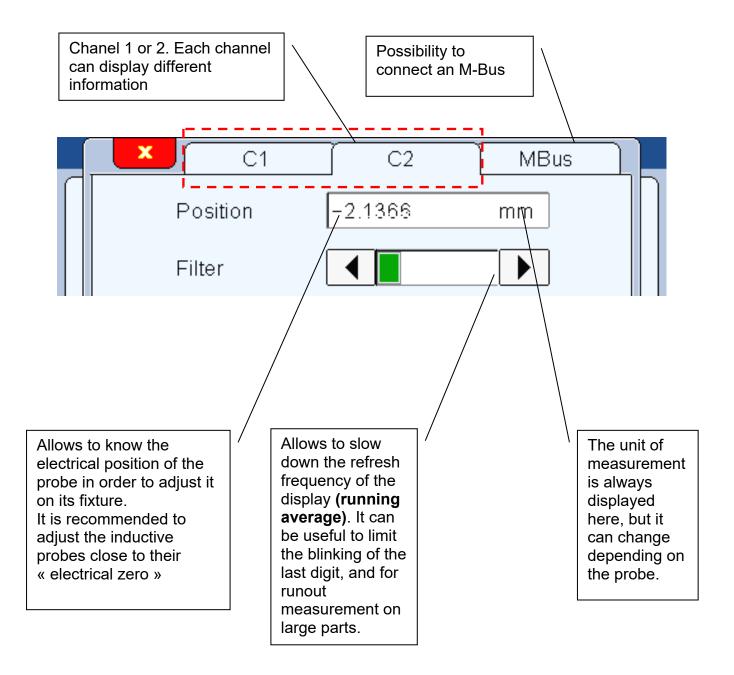
This window allows to define if 1 or 2 measure are displayed on the screen and on which format (needle = galva, horiziontal bargraph or value only).




5.3. SETUP

After clicking on this button, the below window appears

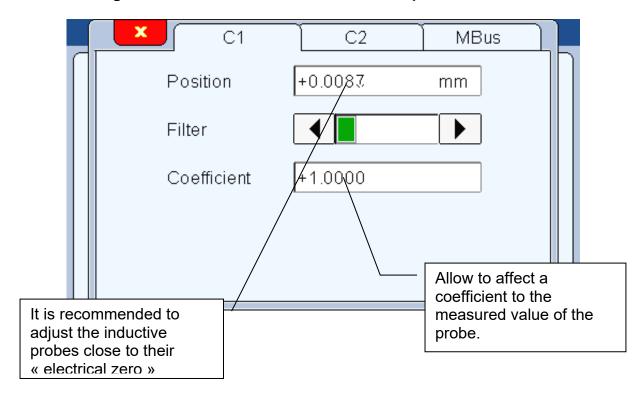
Version for inductive probes



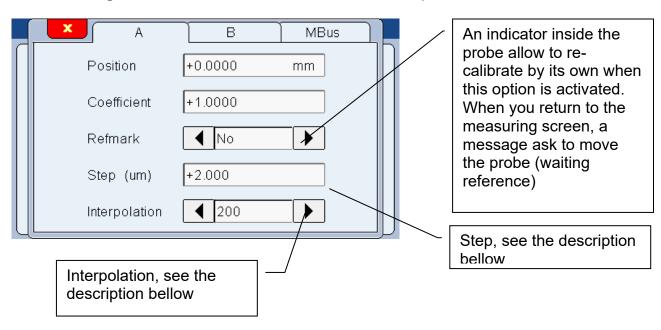
Version for Heidenhain 11µA or 1 Vpp probes

5.3.1. Generalities

The following screen is displayed whatever your probe is. The different options are:



In addition to this general information, some more options are displayed and depends on the concerned probe.


5.3.2. Inductive probe

The following information are focused on inductive probes.

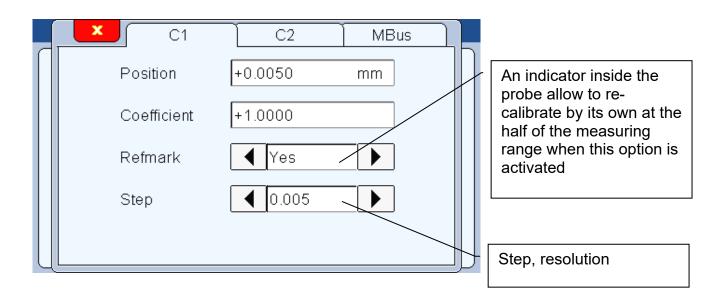
5.3.3. Heidenhain probe (11µA or Vcc)

The following information are focused on Heidenhain probes.

Ref Mark, Step and interpolation. You have to set the correct value for having a correct measurement.

 The step defines the grating period of the probe's glass scale. The different values are defined on the following table:

Type of probe	Step
Specto (ST) 12 or 30	20 µm
Metro (MT)12XX or 25XX	2 µm
Metro (MT) 60 or 101	10 µm
Certo (CT)	2 µm

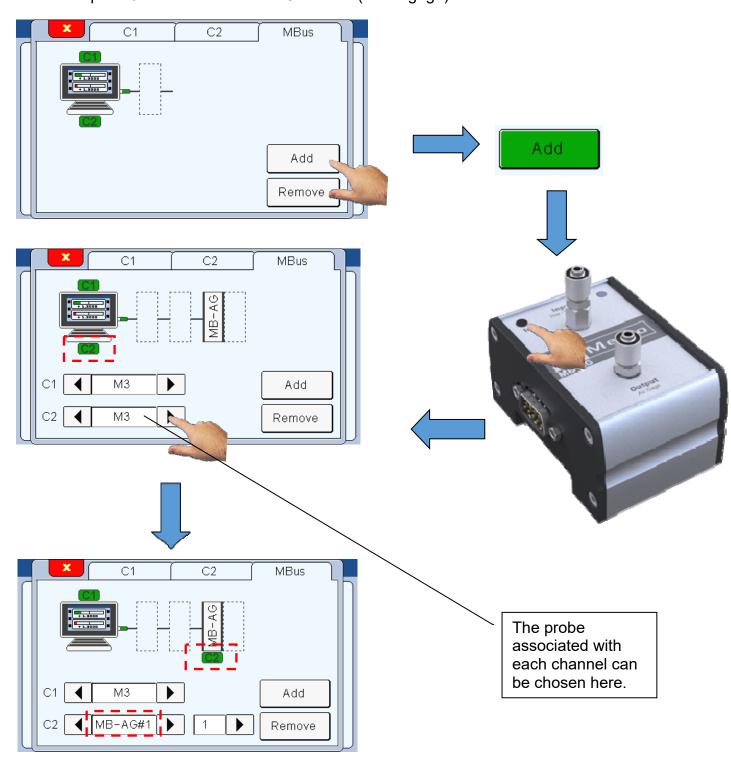

• The interpolation defines the division rate of the glass scale, and therefore the measurement precision :

Example for a probe type Heidenhain Specto ST12:

The glass scale of this probe is engraved with a step of $20\mu m$, therefore if the interpolation is set at 200, you will have a resolution of $20/200 = 1/10 \mu m$.

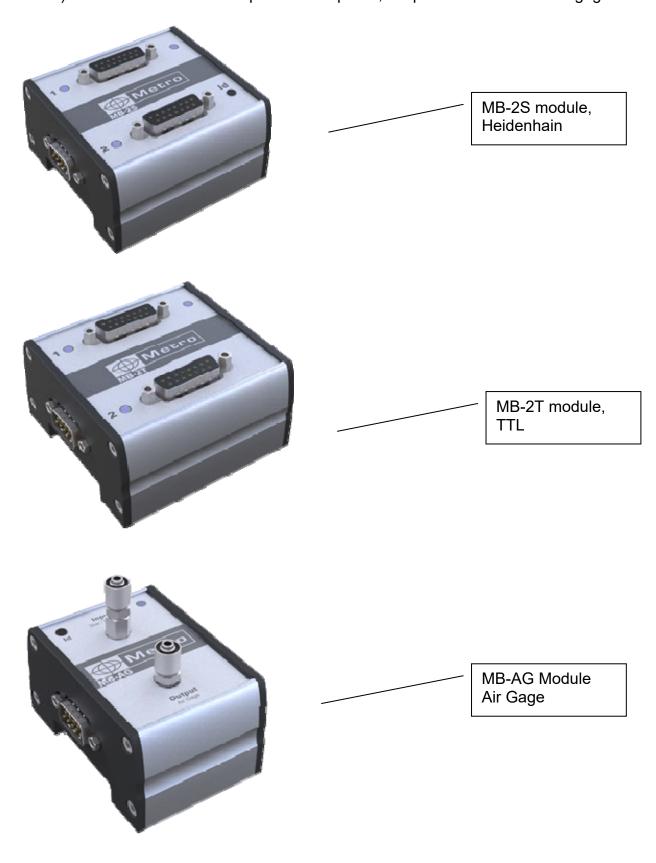
5.3.4. TTL probe with Heindehain pinout

The following information are focused on TTL probes (or Magnescale or Mitutoyo)

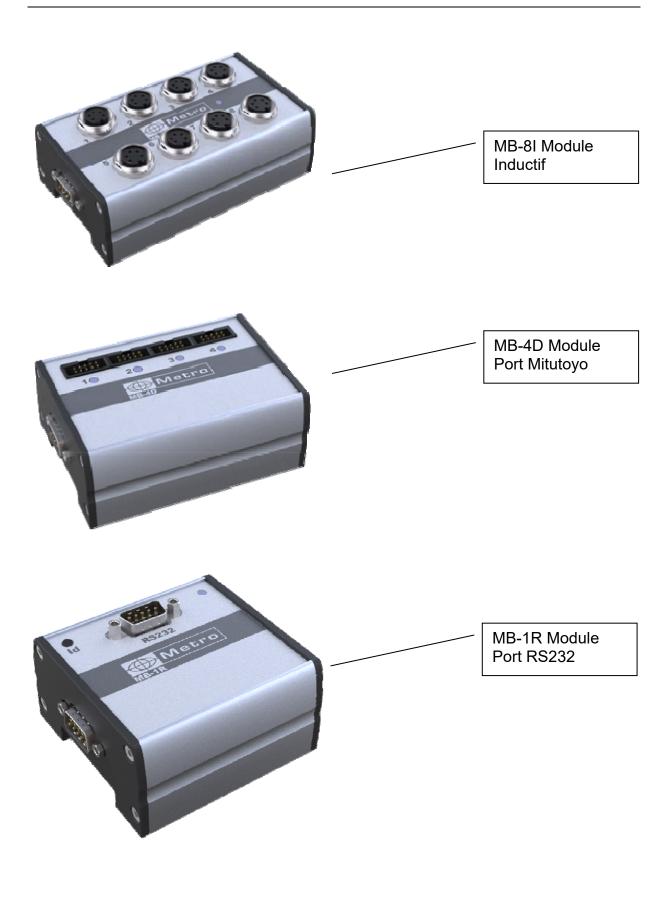


5.3.5. M-Bus modules

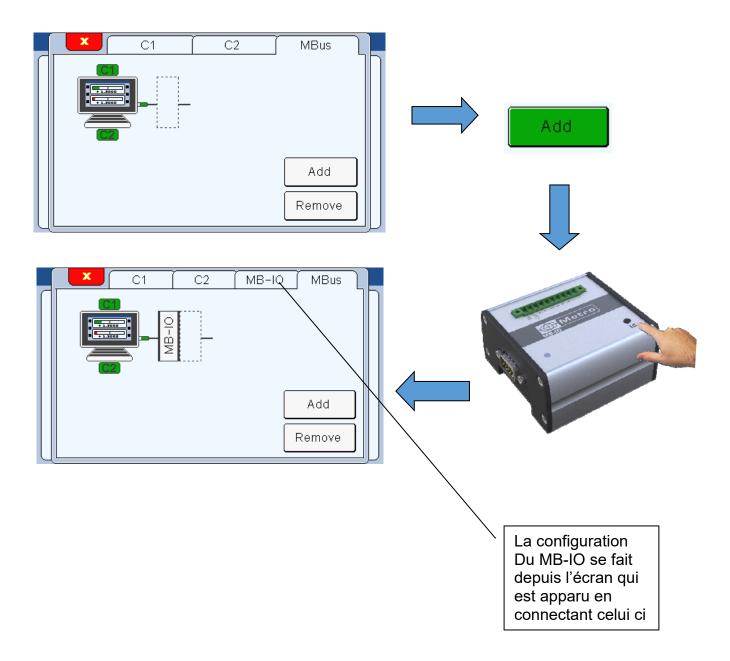
External M-Bus modules can be connected to the M3 thanks to the following screen. It allows to mix 2 different probes on the same display with the multiplexer modules, or to use inside/outside modules.


Multiplexer modules

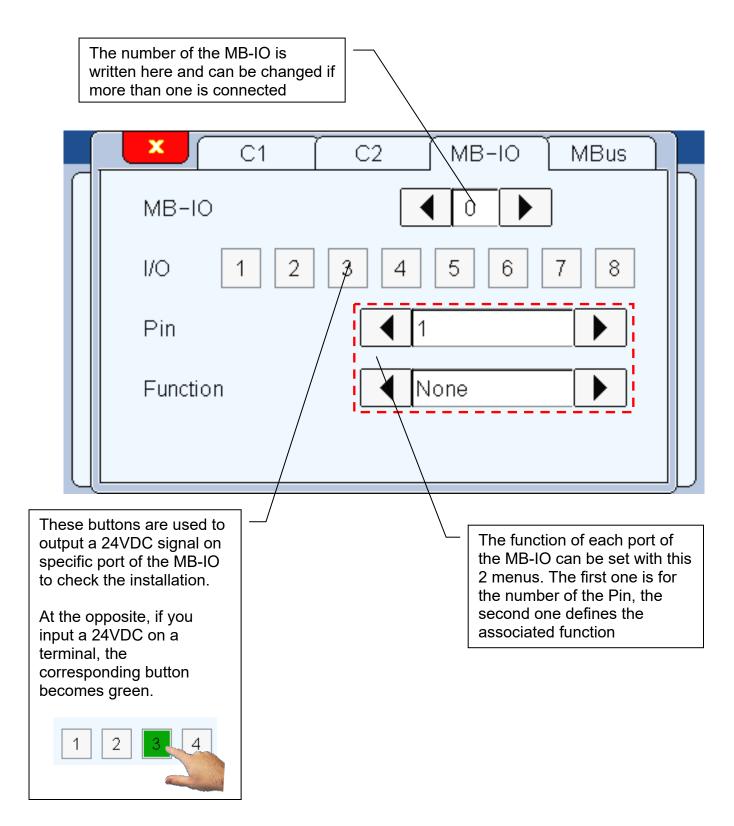
The same process is made to connect all the multiplexer modules Example M3 inductive with MB-AG module (for air gage) on the channel 2.



After being connected, A Multiplexer module must be configured from the C1 or C2 pages of the setup menu (according to the channel with witch the probe is linked). Please refer to the example for each probe, chapter 5.3 to 5.3.6 for air gage.



Input/output modules (see also chap. 10)


The connection of an input/output module is made with the same way than a multiplexer

Example: connection of a MB-IO module on the inductive M3.

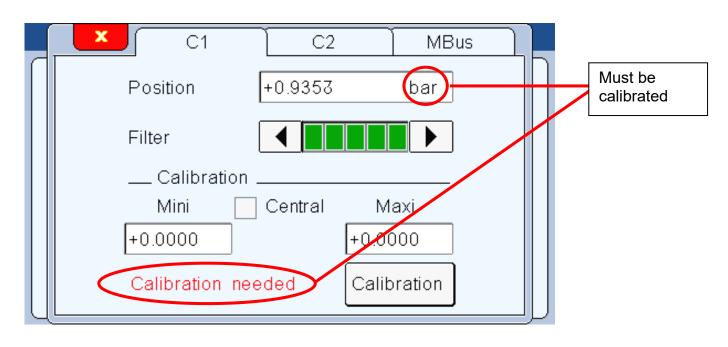
The different options for the MB-IO configuration are displayed bellow.

The different functions available for the MB-IO are listed below:

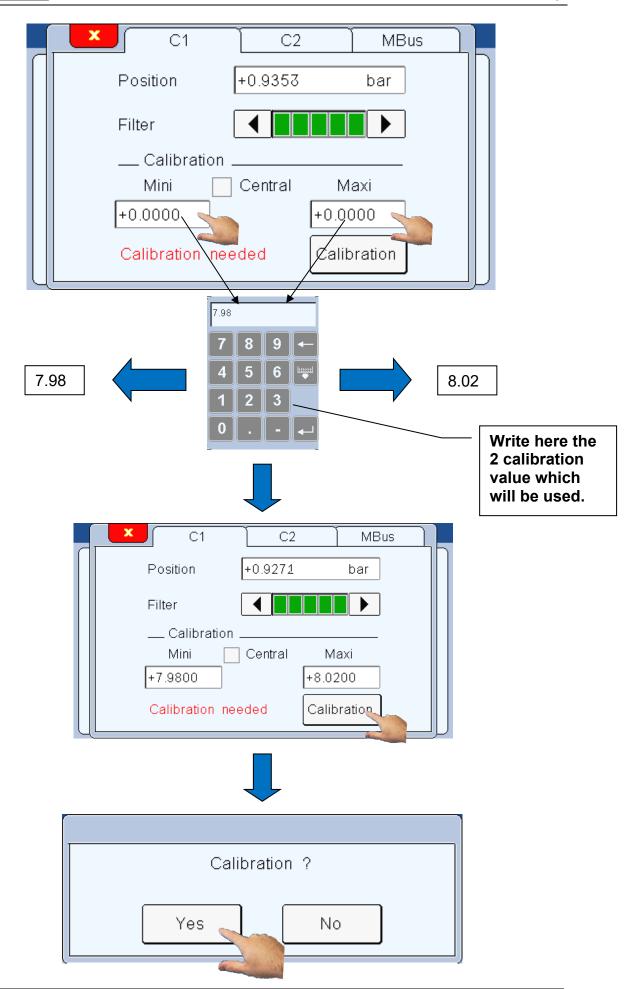
- Transfer: (Input) Transfer the measure to the computer (need a USB or RS232 link)
- Preset : (Input) set the current measured value to the master value
- Zero : (Input) set the current measured value to 0 (relative mode)

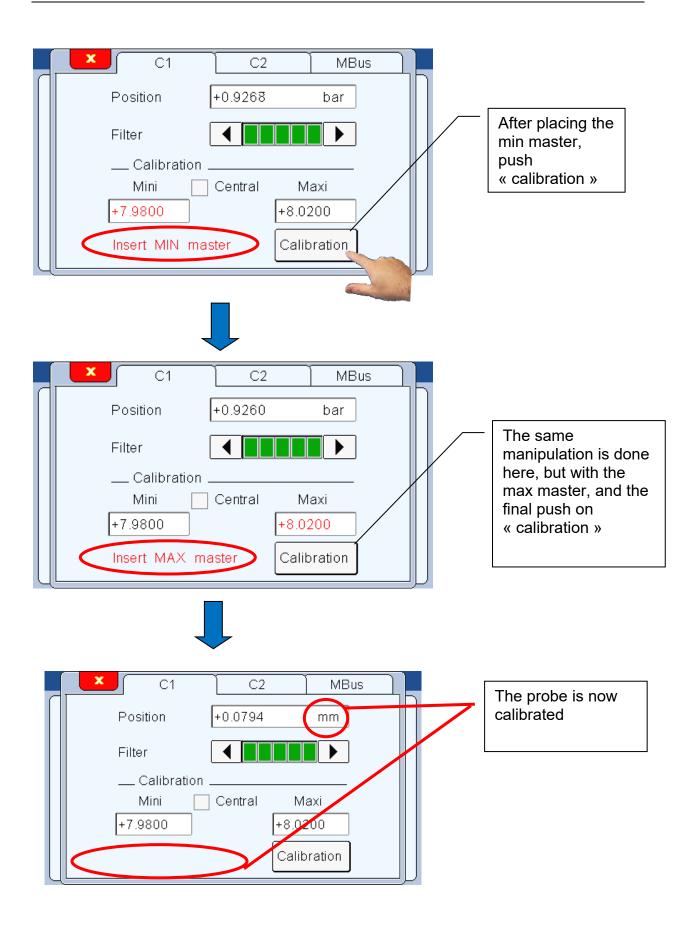
- Clear: (Input) reset the 0 mode (come back to absolute mode)
- Init dyn : (Input) start a dynamic measure
- Characteristic status: (output) output a signal if the characteristics are ok
- Ctrl limit : (output) output a signal if the part is in the lower control limit
- Ctrl limit + : (output) output a signal if the part is in the upper control limit
- No Go: (output) output a signal if the part is out of the lower tolerance limit
- + No Go: (output) output a signal if the part is out of the upper tolerance limit
- Part status: (output) output a signal if the whole part (the 2 probes) respects the tolerance limit.
- Class: (output) output a signal if the part is in the selected class
- Hold: (Input) freeze the screen to display the previous measure as long as the input signal stay.
- Characteristic: (output) changes the displayed screen in the measuring screen
- Touchscreen: disconnect the touch screen function. Useful when connected to a PLC, so that no one can use the touch screen without the permission of the PLC.

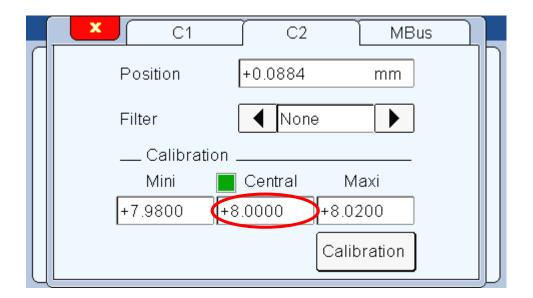
5.3.6. Air gage MB-AG module


The following information are focused on air gage modules and probes.

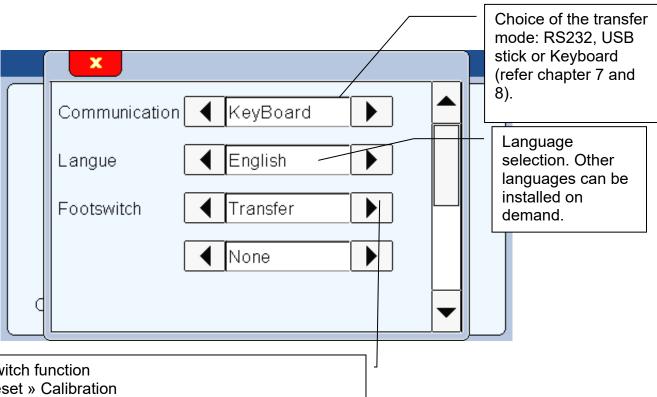
After being connected and linked to a channel thanks to the MBus menu (channel 1 in the example bellow), the probe must be parametrized. To make it, the corresponding channel screen must be check.


The air gage's probe menu needs a calibration before doing the measurement.





There is also the possibility to use 3 points to calibrate the measure. When the button "central" is selected, a third master point is asked. The calibration process stay the same, with one manipulation added.


When the Module is linked to the M3, a diode on the module lights itself in violet. When the module/probe is calibrated, the diode becomes blue.

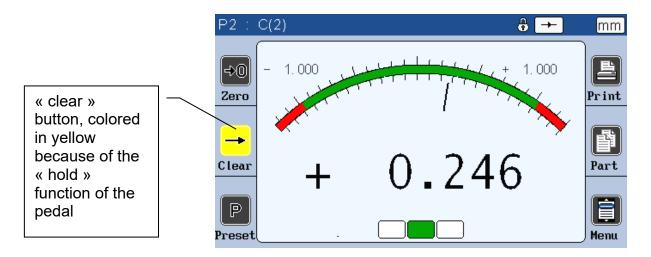
5.4. **CONFIGURATION**

After clicking on this button, the below window appears. This window allows configuring the communication settings of your M3

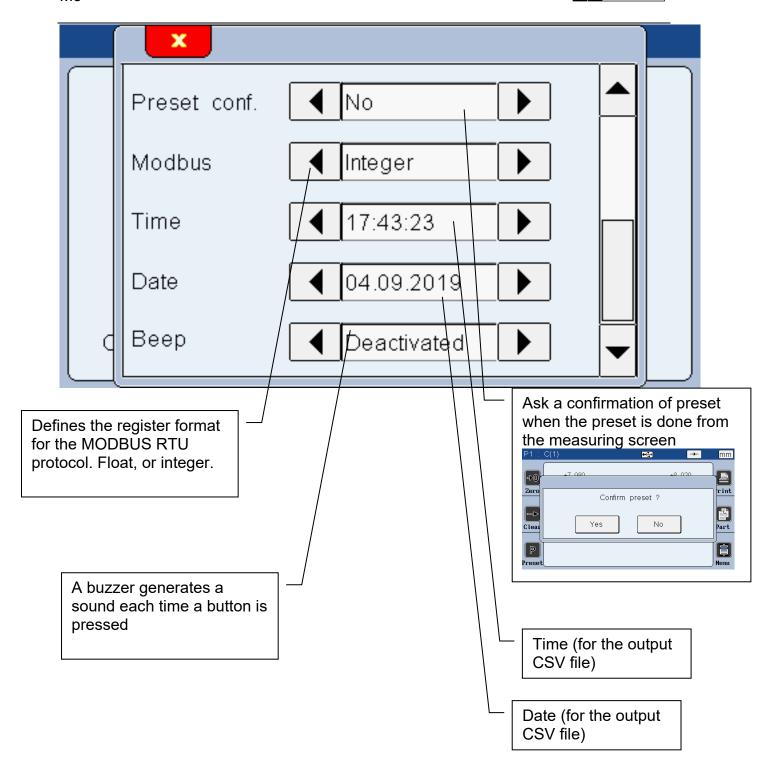
Footswitch function

- « Preset » Calibration
- « transfer » : send the measurement to the RS232 or USB
- « part » : change the active part (part 1 / part 2)
- « Init Dyn » : start dynamic measurement (min, max...)
- « zero » : Set the displayed value at zero
- « hold » : freeze the measuring screen, the "clear" button becomes yellow when the screen is frozen
- "screenshot": generate a BMP file on the USB stick when the footswitch is pressed.

When 2 functions are programed, a pressure on the pedal makes them happen one after each other.

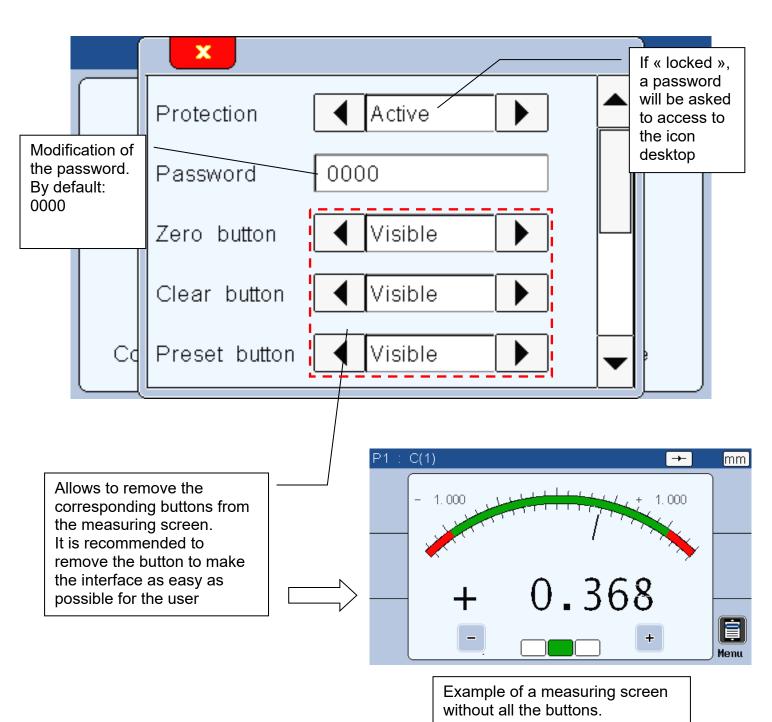

* If you select communication→keyboard, the M1/M3 will be detected as a keyboard when connected to a computer with an USB link, without installing a specific driver or software.

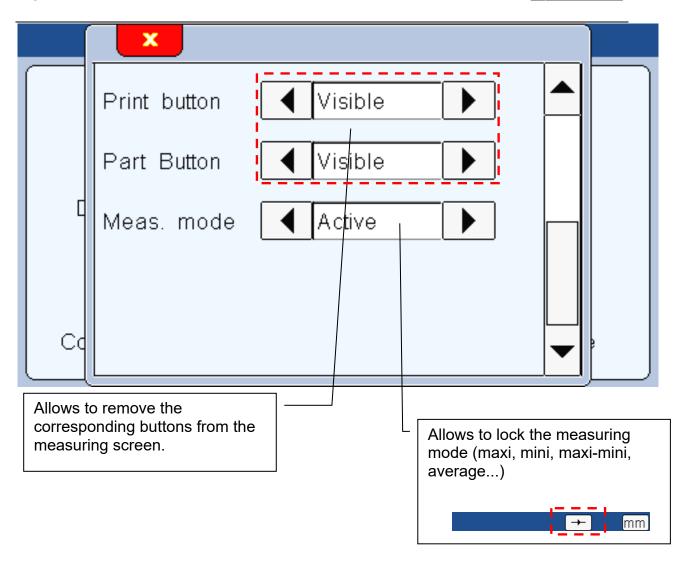
Then when you transfer the measure (with screen, IO or footswitch), the displayed value will appear on your PC where your cursor is (for example on an Excel cell), in the same way than you would have typed with your standard keyboard.


** If you select transfer→USB Stick, a "output.csv" file will be created on the connected USB stick, and each time you press the "Print" button of the measuring screen, a line will be added on the file.

If you use a QR code reader to input a manufacturing order number, the "OUTPUT.CSV" file takes the name becomes "manufacturingordernumber.csv"

The "clear" icon is yellow while the hold function is activated:

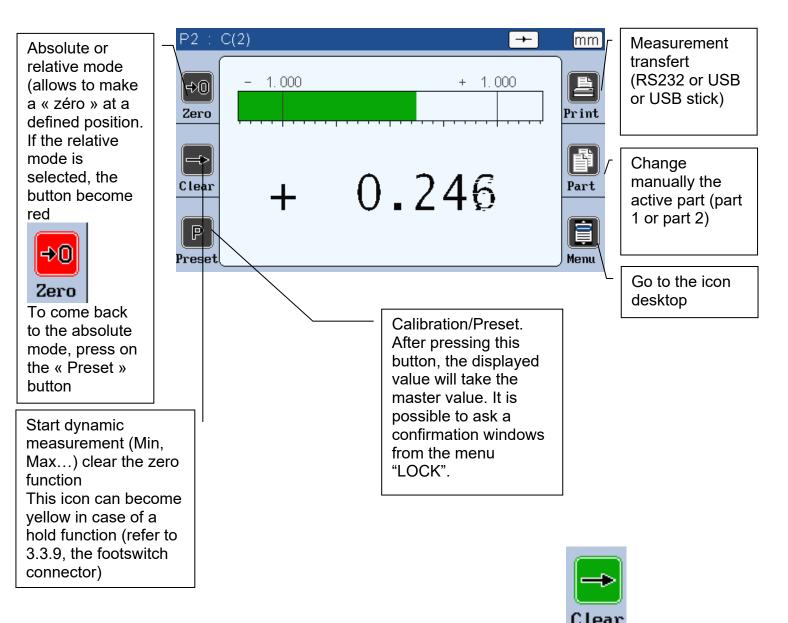



5.5. LOCKING

After clicking on this button, the below window appears. This screen allows to lock by password some functions of the M3

5.6. MEASURE

After clicking on this button, the measuring screen appears. Please read the chapter 6 for the presentation of the measuring screen.

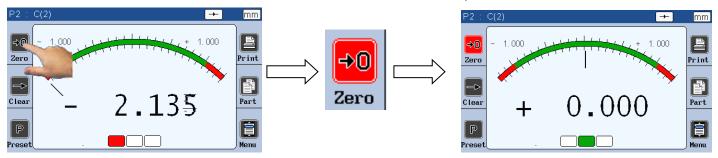


6. MEASURING SCREEN

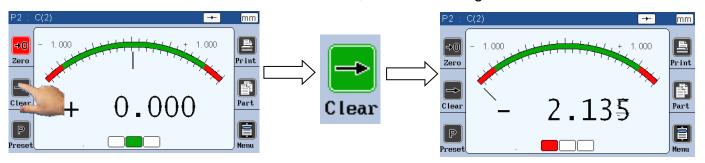
The M3 starts on this screen.

The measuring screen allows seeing the characteristics of the part that has to be controlled. A needle/bargraph indicator allows seeing the characteristic in function of the tolerance of the part (see chap. 4.1 for tolerances modification).

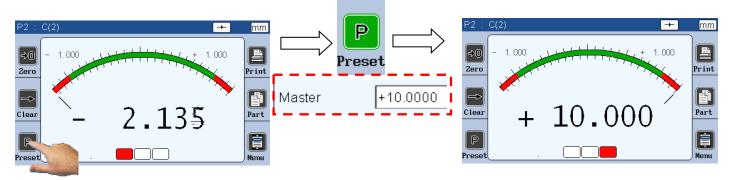
6.1. LATERAL BUTTON FUNCTIONS



When they are pushed, the button becomes green for one second:

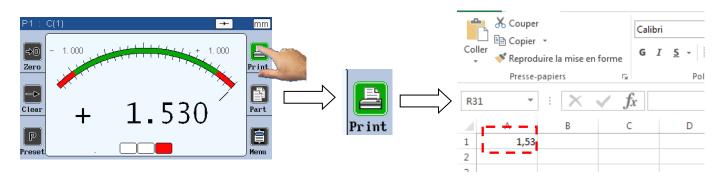

Zero:

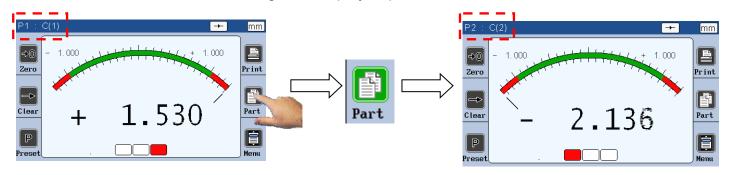
This button is used to set the current measured value to 0, it's the relative mode


Clear: Clear

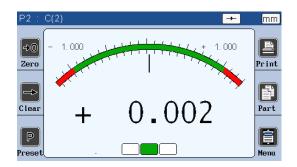
This button allows to cancel the zero button, and to switch again to absolute mode

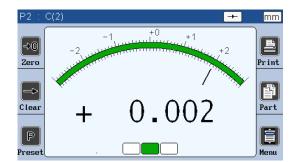
Preset : Preset


This button allows to set the current measure value to the master value



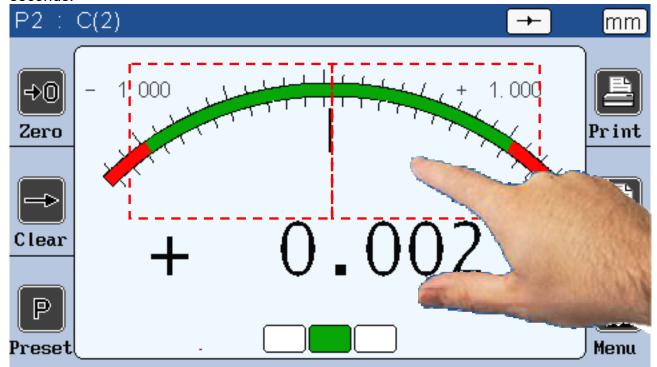
The print function allows to transfer the measured value to a computer.


This function is used to change the displayed part



6.2. Choice of the needle indicator style

If the M3 is configured with the needle indicator (mode Galva, see chap. 5.2), it is possible to change manually the type of scale.

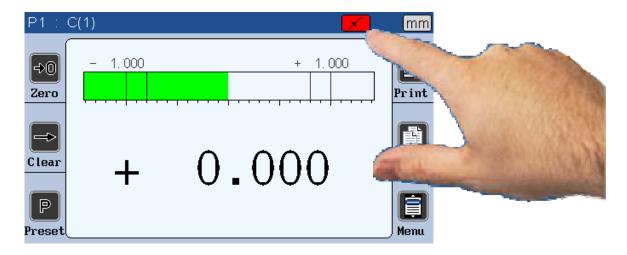


Automatic Manual

The automatic needle scale adapts automatically with the part tolerances.

The manual needle has fixed scales and allows to use the +/- option (see chap 5.2)

You can change the scale type by touching the area as on the picture bellow during 2 seconds.

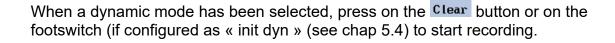


6.3. Temporary dynamic mode

As explained on the chapter 5.1, the characteristic is defined either as « static » (direct) or « dynamic » (Max, Min ...)

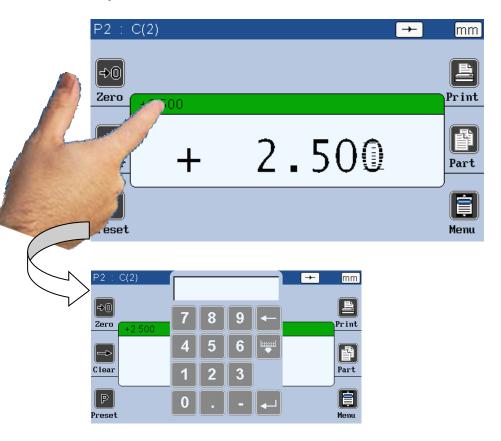
If a characteristic has been adjusted as static, it is nevertheless possible to change temporarily to a dynamic mode, directly from the measuring screen.

To change the measuring mode, press on the icon as shown on the above picture.



Average (only adapted on an automatic fixture)

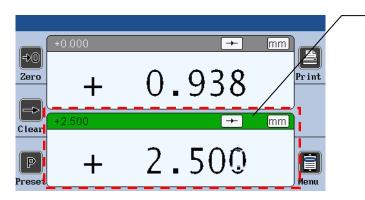
Median The displayed value is calculated with the formula (MAX-MIN)/2.



6.4. Display mode without tolerance

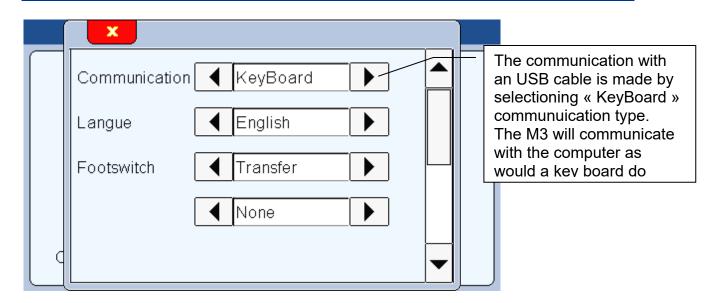
This display mode is very adapted to be used with incremental probes like Heidenhain.

This mode (see chap. 5.2) allows to display only the numerical value, without tolerance indication.

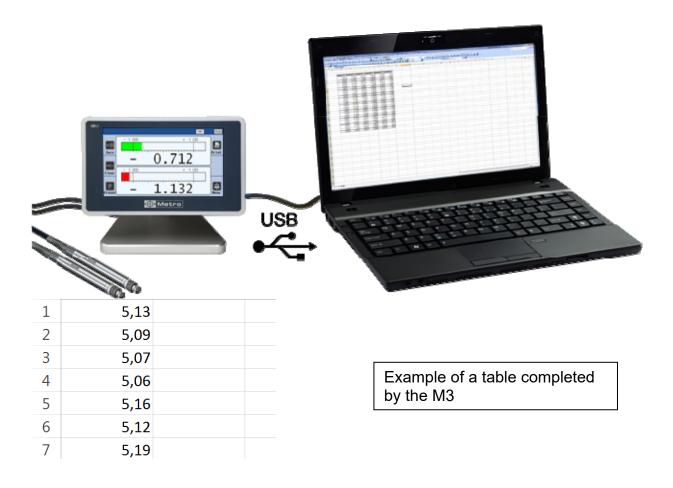

It is also possible to change the preset value (calibration) directly from this screen. Press on the value as shown on the below picture, an input the new value with the keyboard.

If the double display mode is selected, the 2 characteristics can move together, but only 1 is active.

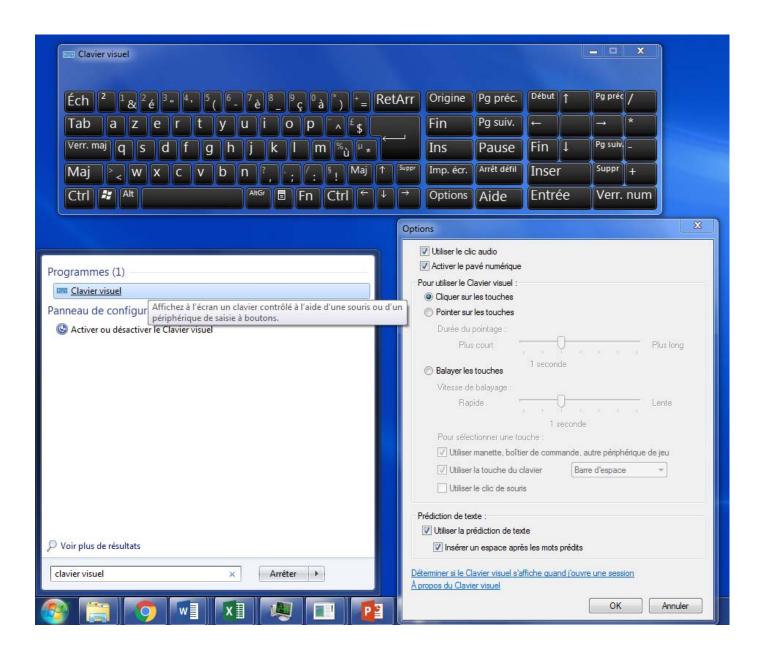
The lateral buttons have an effect only on the active characteristic.


For selecting the active characteristic, press on it and the top of the box will become green.

The lateral button have an effect only on the active characteristic



7. USB COMMUNICATION


If you select the "Keyboard/USB" communication, the M3 will be detected has a keyboard when connected to a computer, without installing a specific driver or software.

Then when you transfer the measure (with screen, through IO or footswitch), the displayed value will appear on your PC when your cursor is. (For example on an Excel cell), in the same way than you would have typed with your standard keyboard.

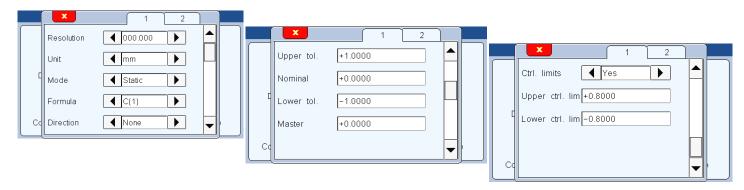
A problem appears sometimes while the data is transferring with a USB cable. The M3 display acts like a keyboard, so, in order to write numbers, the "num lock" key must be activated. If your keyboard doesn't have the "num lock" key, you can still find it by writing "visual keyboard" in the windows search bar, and activate it. If even there the "num lock" key doesn't appear, the option key allows to access to a menu from which you can activate the "num lock".

8. RS232 COMMUNICATION

The M3 can communicate with an ASCII protocol allowing to master and configure all the functions.

For connecting the M3 to a PC or a PLC, you must use a cable Metro ref 45160, sold separately.

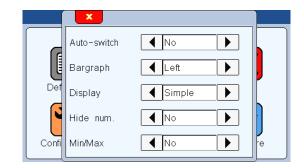
8.1. Commands


8.1.1. Generalities

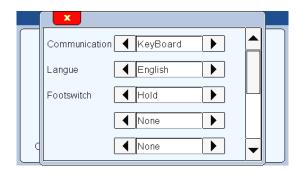
All the commands must be ended by a « CR » character. (ASCII code 13/ \$0D). The commands can be sent grouped by separating with a «;» (max 500 characters). The display is refreshed only once after reception of the « CR » character.

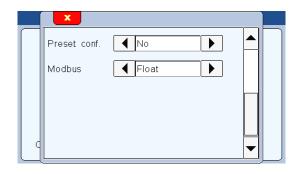
8.1.2. Command list

8.1.2.1. Window PART



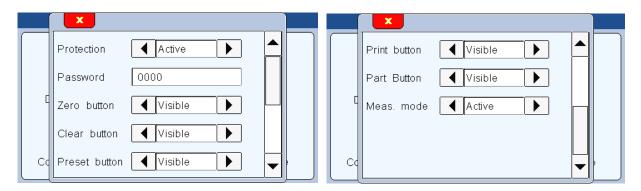
Window « Part »	(Command by char	acteristic with "n" = 1 or 2	(number of the characteristic))
Rubric	Read. command	Write command	Comment
Resolution	nRES?	nRES=x	x=1 to 5 (number of decimals)
Unit	nit nUNIT? nUNIT=x		x=0(mm)
			x=1 (inch)
			x=2 (µm)
Dynamic mode	nDYN?	nDYN=x	x=0 (static)
			x=1 (maxi)
			x=2 (mini)
			x=3 (maxi-mini)
			x=4 (average)
			x=5 (median)
Formula	nFM?	nFM=x	x=0 (C1)
			x=1 (C2)
			x=2 (-C1)
			x=3 (-C2)
			x=4 (C1+C2)
			x=5 (C1-C2)
			x=6 (-C1+C2)
			x=7 (-C1-C2)
Direction	nDIR?	nDIR=x	x=0 (sans)
			x=1 (internal)
			x=2 (external)
Upper tolerance	nUT?	nUT=seee.ddddd	
Nominal	nNM?	nNM=seee.ddddd	
Lower tolerance	nLT?	nLT=seee.ddddd	
Master	nMT?	nMT=seee.ddddd	
Activate control limits	nLIMIT?	nLIMIT=x	x=0 (inactive)
			x=1 (active)
Upper control limit	nUCL?	nUCL=seee.ddddd	
Lower control limit	nLCL?	nLCL=seee.ddddd	
Reference	nREF?	nREF=xxxxxxxxx	xxxxxxxx = part ref


8.1.2.2. Window DISPLAY

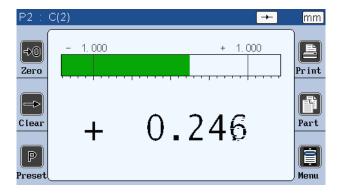


	Window "display"				
Rubric	Read. command	Write command	Comment		
Auto switch	AUTO?	AUTO=x	x=0 (manual)		
			x=1 (auto)		
Bargraph	BAR?	BAR=x	x=0 (horiz. Bar origin left)		
			x=1 (horiz. Bar origin center)		
			x=2 (needle)		
			x=3 (non = value only, no tolerance)		
Display	DISPL?	DISPL=x	x=1 (display 1 characteristic on the screen)		
			x=2 (display 2 characteristics on the screen)		

8.1.2.3. Window CONFIGURATION



Window "Configuration"				
Rubric	Read. command	Write command	Comment	
Transfert	PRINT?	PRINT=x	x=0 (USB)	
			x=1 (RS232)	
Langue	LANG?	LANG=x	x=0 (French)	
			x=1 (English)	
			x=2 (German)	
			x=3 (Spain)	
			x=4 (Italian)	
			x=5 (Hungarian)	
			x=6 (Czech)	
			x=7 (Swedish)	
			x=8 (Portugaise)	
Footswitch	FOOT?	FOOT=x	x=0 (Print)	
			x=1 (Preset) → calibration	
			x=2 (Zero)	
			x=3 (change Part reference)	


	v=4 (start dynamic massurement)
	x=4 (start dynamic measurement)
	x=4 (start dynamic measurement)

8.1.2.4. Window « Lock »

Window "Lock"					
Rubric Read. command Write command Comment					
Protection LOCK? LOCK		Lock			
UNLOCK Unlock					
Code	PASS?	PASS=xxxxxx	xxxxxx = password with 6 figures		

8.1.2.5. Measuring screen

Measuring screen				
Rubric	Read. command	Write command	Comment	
Zero		ZERO	Zero relative	
Clear		CLR	Start dynamic measurement	
Preset		PRESET	Calibration	
Print		?	Measurement transfert: If 1 characteristic mode, transfert the value with the format:+000.00000 <cr> If double characteristic mode, transfert the value with format:+000.00000,+000.00000<cr> Transfert the characteristic 1, format = +000.00000<cr></cr></cr></cr>	
		2	Transfert the characteristic 2, format = +000.00000 <cr></cr>	
Part		G1	Part 1	
		G2	Part 2	
M3 power off		OFF	Shut down the M3	

Reset the M3	RST	Reset the unit (remove the configuration, calibration etc)
Factory reset	FCTRST	Deep reset including the correction of linearity, if any
Gives a manufacturing order number		The manufacturing order number appears on the top bar of the measuring screen, and then when exporting on USB, the export file will have the name xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

9. DATA EXPORT ON USB KEYS

The M3 offer various possibilities for data export.

The M3 are compatible with most of the available USB key. However, some particular models are not compatible. It is also not compatible with USB stick having a partition.

For saving the data on the USB key, you must configure the menu CONFIGURATION → COMMUNICATION → USB Key

Then, when the transfert is triggered (by footswitch, touch of the PRINT button, by an input action or Modbus), a file will be created on the USB key.

9.1. Standard mode:

As a standard a file named "output.csv" is created on the USB key. It look likes this:

Output.csv:

Characteristic	1	2				COMMENT
Name	P1 : C(1)	P2 : C(2)				Name of the characteristics (PART x – CHANNEL x)
Upper tol.	+0.02100	-0.00700				Upper tolerance
Nominal	+20.00000	+20.00000				Nominal value
Lower tol.	+0.00000	-0.02000				Lower tolerance
Measure	+20.00012	+19.99350	17:58:55	04/09/2019	GO	Data #1 + indication GO
Measure	+20.00011	+19.99340	17:58:57	04/09/2019	GO	Data #2 + indication GO
Measure	+20.00010	+19.99980	17:59:01	04/09/2019	NG	Data #3 + indication NG

9.2. Advanced mode:

It is possible to connect a QR code reader (METRO ref ACS-AFF-003), and to input a manufacturing order number on the display.

After scanning the QR code corresponding to the manufacturing order number, the number will appear on the top bar of the measuring screen, and the output csv file will get the name of the scanned name. Then each time you scan a new number, after saving the first part, a file is created on the USB key.

Example:

Standard screen before scanning manufacturing number:

After scanning the following QR code, corresponding to the command

OFA = ORDER 12345

The screens become like this:

Then when you press the PRINT button the first time, a file is created on the USB key with the name: ORDER 12345.csv

10. CONFIGURATION OF THE UNIT WITH QR CODES

The M3 displays offers the possibility to be configured by a simple scan of QR code. You should use the QR Code reader Metro reference ACS-AFF-003.

This will simplify the configuration and reduce risks of errors. It takes less than 2 seconds to configure the display with a QR code scan.

List of commands:

All the RS232 commands listed on the table chapter 8 - RS232 communication can be encoded on a QR code.

The goal of the configuration by QR code is generally to save time and limit configuration errors when the display is used for several configuration.

Before sending a new configuration to the display, it is recommended to start sending a reset command, so that all the previous parameters will be reset the default; because the QR code we only modify the encoded parameters. Other parameters will remain the same.

This command is: RST

After sending this command, you must start the configuration by the general parameters, then configuration of the characteristics,

11. RTU MODBUS protocol

This protocol allows to connect the M3 to a compatible PLC. A maximum of 256 register can be read.

Example of a RTU Modbus communication with an automate Pro-Face. This example can be download from our website www.metro-fr.com

Trame Modbus RTU Adr Code Data CRC16

Address: always equal to 1

Code: the M3 supports codes « 3 » by reading and « 16 » by written

Data: 1 to 256 register

CRC16: verification code on 2 octets

The following functionality are available:

- Reading of the position of 2 probes

- Instant reading of the value of 2 characteristic

- Preset

- Reading / programing of the tolerances, of the master value, the formula...

Register are compounded by one or a couple of 16 bits words.

Function	Address	Size (word)	Value
Preset (W)	0	1	1
Start a dynamic measure (W)	1	1	1
Active programm (R/W)	4	1	0 ou 1
Life word (change each 100ms) (R)	6	1	0 ou 1

Stop	7	1	1
Active M3	8	1	1 = measure
			0 = Menus

Register by characteristic: from 100 to 188 for the characteristic 1 and from 200 to 288 for the characteristic 2

Farmanda (DAA)	400		0 - 01
Formula (R/W)	100	1	0 = C1
			1 = C2
			2 = -C1
			3 = -C2
			4 = C1 + C2
			5 = C1 - C2
			6 = -C1 + C2
			7 = -C1 - C2
Maxi of a dynamical cote (R)	101	2	
Mini of a dynamical cote (R)	103	2	
Lower control limit (R/W)	105	2	
Upper control limit (R/W)	107	2	
Active class	109	1	1 à 16
Unit	110	1	0 = mm
			1 = inch
			2 = µm
Control limit activated	111	1	0 = no
			1 = yes
resolution	112	1	1 to 5 (decimal)
State of the characteristic	113	1	0 = good
			1 = < Mini
			2 = > Maxi
			3 = < lower ctrl limit
			4 = > upper ctrl limit
Type of the characteristic	114	1	0 = Static
Type or and endicatement			1 = Maxi
			2 = Mini
			3 = Maxi-Mini
			4 = average
			5 = Median
Nominal	115	2	o Modian
Lower tolerance	117	2	
Upper tolerance	119	2	
Master value	121	2	
Measure	123	2	Displayed value
Mini class 1	126	2	Biopiayou valuo
Mini class 2	128	2	
Mini class 3	130	2	
Mini class 4	132	2	
Mini class 5	134	2	
Mini class 6	136	2	
Mini class 6 Mini class 7	138	2	
Mini class 7	140	2	
Mini class 6 Mini class 9			
IVIIIII CIASS 9	142	2	

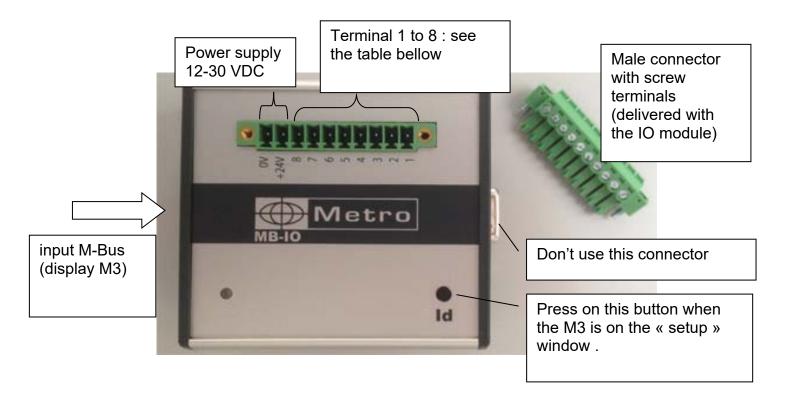
Mini class 10	144	2	
Mini class 11	146	2	
Mini class 12	148	2	
Mini class 13	150	2	
Mini class 14	152	2	
Mini class 15	154	2	
Mini class 16	156	2	
Maxi class 1	158	2	
Maxi class 2	160	2	
Maxi class 3	162	2	
Maxi class 4	164	2	
Maxi class 5	166	2	
Maxi class 6	168	2	
Maxi class 7	170	2	
Maxi class 8	172	2	
Maxi class 9	174	2	
Maxi class 10	176	2	
Maxi class 11	178	2	
Maxi class 12	180	2	
Maxi class 13	182	2	
Maxi class 14	184	2	
Maxi class 15	186	2	
Maxi class 16	188	2	

probe 1	7000	2	
probe 2	7002	2	

12. OPTIONAL M-BUS MODULES

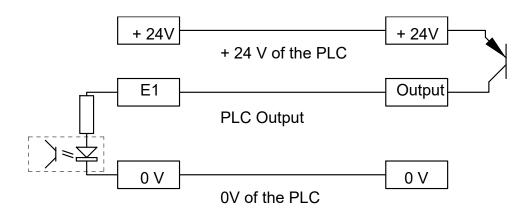
12.1. MB-IO Module (see also chap 5.3.5)

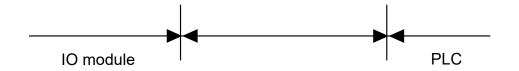
As an option, it is possible to connect up to 4 M-Bus modules with 8 inputs/output isolated by opto-coupler. (ref MB-IO)

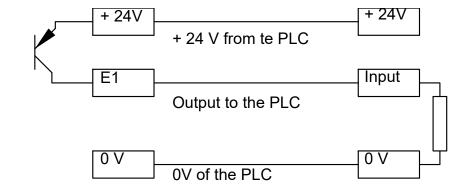

The 8 outputs are similar to the α open collector PNP » type. They can be used with an external power supply 12 to 30 VDC maximum. The maximal output current drained by each output is 50mA

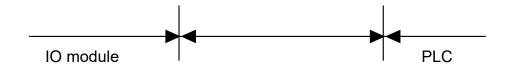
The 8 inputs represent a 2.2kOhms load connected to the 0 volt.

Refer to the chapter 5.3 (setup) to connect a MB-IO module




List of available functions:


Transfer	Print, transfer the measured value		
Preset	Set the display value to the master value		
Zero	Set the display value to 0		
Clear	Reset the dynamical measure		
Init Dyn	Start a dynamical measure		
State characteristic	Output a signal if the characteristic is in the tolerance		
Lower control limit	Output a signal if the part is in the lower control limit		
Upper control limit	Output a signal if the part is in the upper control limit		
Out Tol -	Output a signal if the part is out lower tolerance		
Out Tol +	Output a signal if the part is out upper tolerance		
Part status	Output a signal if the part is in the tolerances		
Class	Output a signal on a defined port for each class		
Stop	Hold the measure		
characteristic	Change the displayed characteristic		
Touchscreen	Disable the touch screen function		

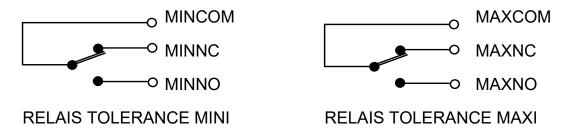


Connection example between a M3 and a PLC

12.2. MB-RL Module

Please refer to the chapter 5.3 (Setup) to connect an M-Bus module

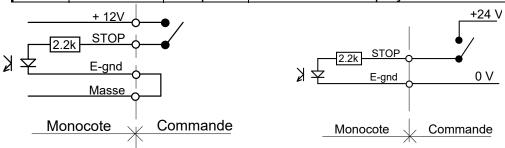
The MB-RL module has been designed for retrofitting old Monocote displays equipped with the optional relay board.



The external M-bus module has the same pinout (SUBD-15) than the relay board of the Monocote display, so there is no need to change the wiring of the existing installation.

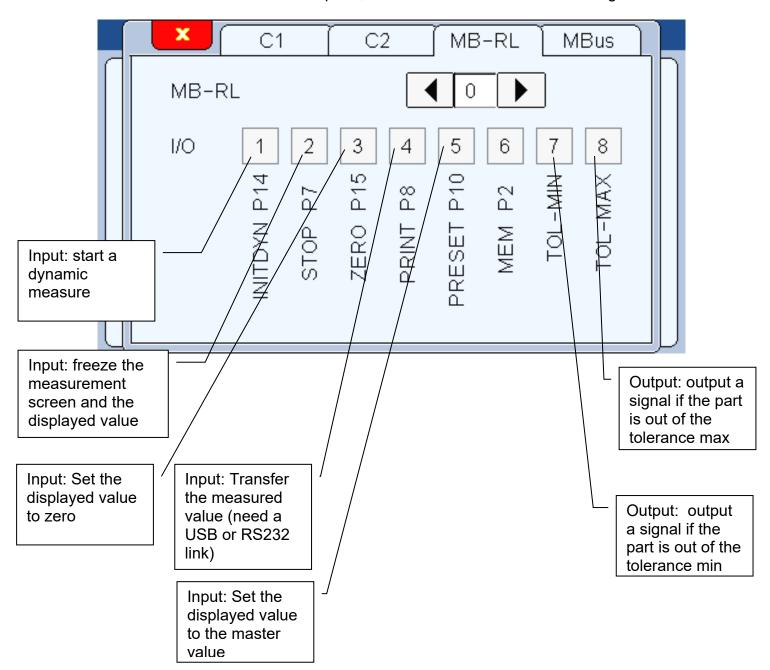
The MB-RL has two independent and isolated relays indicating the position of the displayed measurement by comparison with the tolerances. Each relay provides a contact that is normally open in case the measurement is within the tolerances (MINNO and MAXNO) and a contact that is normally closed (MINNC and MAXNC). The commons of each relay (MINCOM and MAXCOM) are independent, so that the user is as free as possible.

Four inputs isolated by opto-couplers enable to operate the M3 by remote control. They are active at the logical level 1 (+12 to + 24 Volts) that must be maintained at 1 for 50 milliseconds minimum. The command is effective when the input comes back to zero, except for the input STOP that stays active as long as the logical level 1 (+12 to + 24 Volts) is maintained.


- <u>INITDYN</u>: This input controls the initialisation of memories for the dynamic measurement. It must be used every time the dynamic measurement starts, when the part to be measured is already in place under the probes. This command has the same function as the button "CLEAR" of the measuring screen.
- <u>STOP</u>: This input stops the measurement (and freezes the screen) as long as it is maintained at the logical level 1.
- <u>ZERO</u>: This input controls the zero reset of the display. The display then indicates the variations of the measurement in comparison with this origin. This command has the same function as the button "ZERO" of the measuring screen
- <u>PRINT</u>: This input controls the sending onto the communication port of the displayed measured value. This command has the same function as the button "PRINT" of the measuring screen
- <u>PRESET</u>: External command of calibration according the selected working mode. This command has the same function as the button "PRESET" of the measuring screen

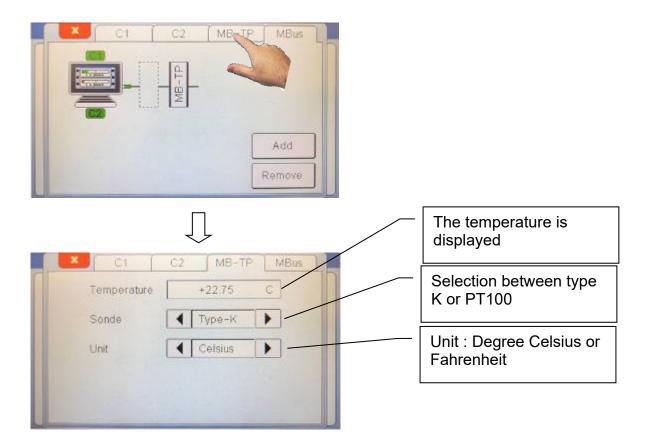
SUB D connector (15 pins): pin assignment

Borne	Signal	Sens	Description
1	+5 V	output	Power supply to activate the inputs
2	Not		
	connected		


3	MINNC	-	Mini tolerance relay contact 1A 48V
4	MINCOM	ı	Common of mini tolerance contacts
5	MINNO	ı	Mini tolerance relay contact 1A 48V
6	E_GND		Input ground
7	STOP	input	Command for Stop mode
8	PRINT	input	Command for measurement transfer
9	Ground	ı	Supply ground
10	PRESET	input	External calibration command
11	MAXNC	ı	Maxi tolerance relay contact 1A 48V
12	MAXCOM	ı	Common of maxi tolerance contacts
13	MAXNO	- 1	Maxi tolerance relay contact 1A 48V
14	INIDYN	input	Command for measurement initialisation
15	ZERO	input	Command for display reset to zero

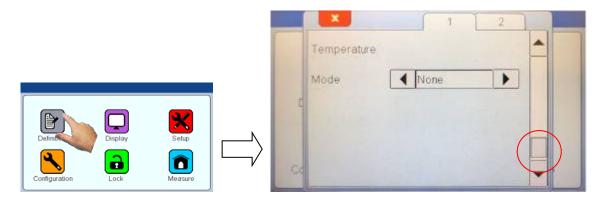
Command example: with internal supply (not isolated) and with an external supply (isolated).

The following screen appears on the M8 when a MB-RL is connected. There is a function for each of the 8 ports, and these functions can't be changed.


12.3. MB-TP Module – for temperature compensation

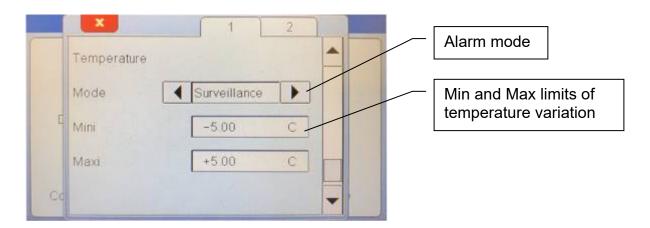
The MB-TP module allows to use an isolated thermocouple type K (hot junction) or PT100 sensor.

2 functions are then available: alarm or compensation.


A - Identification and configuration of the Temperature module MB-TP

B - Configuration of the temperature mode

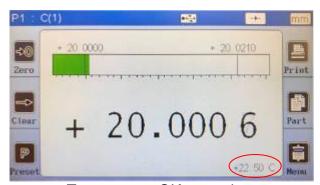
After the identification described on the previous chapter, a new window is available from the last page of the menu DEFINITION.

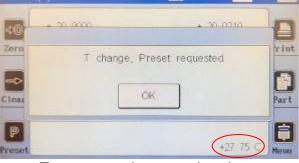


As a standard, the temperature mode is deactivated. You can now choose between:

a – Alarm mode

When selecting the Alarm mode, it is required to define the temperature variation acceptability, with a MIN and a MAX, in the chosen unit.

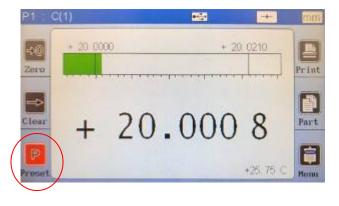




Here we selected +/- 5°C of allowed temperature variation.

Let's come back to the measure screen:

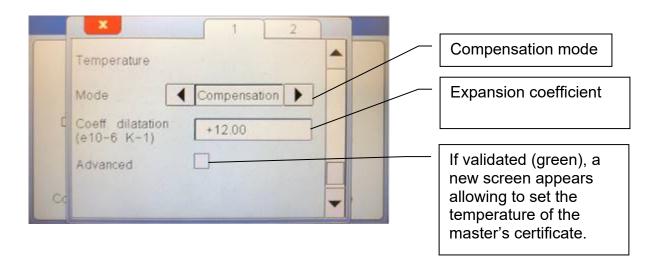
After a PRESET, the actual temperature is recorded, and the monitoring starts.



Temperaure OK = no alarm

Temperaure increased = alarm

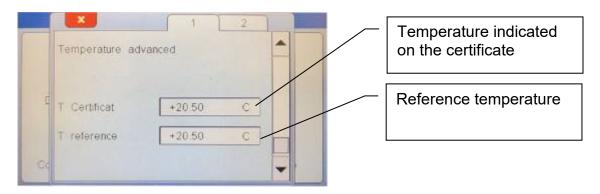
After validation with the OK button, the Preset button becomes red until you made the preset :



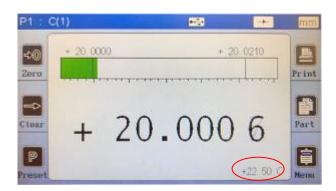
The PRESET button become black again after preseting.

The new reference temperature has now been moved to the actual temperature.

b – Temperature compensation mode



When the « compensation mode » is activated, it is requested to enter the expansion coefficient. As an information, on the below table you can see the coefficients of the main materials (source Wikipedia):


Material	α in 10 ⁻⁶ /K at 20 °C
Aluminium	23
Brass	19
Stainless steel	17.3
Copper	17
Gold	14
Nickel	13
Iron or Steel	11.1
Carbon steel	10.8
Platinium	9
Glass	8.5
Tungsten	4.5

The compensation is done assuming that the Master part has been measured at 20°C. If it is not the case, select the option "advanced" and a next page appear, allowing to enter the temperature of the master during the measurement according to its certificate:

When the configuration has been done, you can go to the measuring screen.

From the PRESET, the reference of temperature is done.

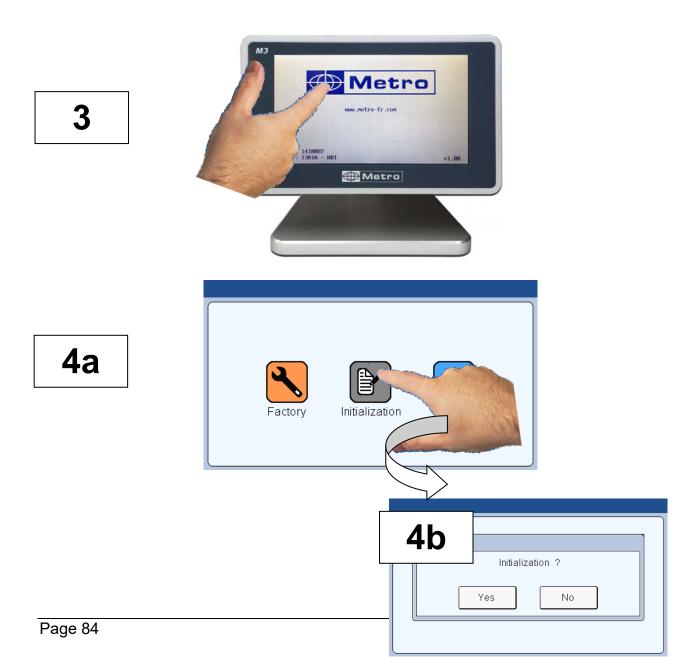
If the temperature increases, the part becomes bigger. With the compensation, the measurement shall not change, or at least mostly limit the temperature effect, depending on the accuracy of the defined coefficient.

If you are using the advanced mode, you need to enter the temperature of the certificate, and the reference temperature.

For example, if you enter a certificate temperature of 20° and a reference temperature of 30°, when you PRESET, the displayed value will represent the size of the master at 30°.

The temperature function is advanced functionality of M3. It is recommended to make trials and comparative measurements to validate the process before using it in production.

The MB-TP module is compatible with PT100 sensors and hot junction isolated Thermocouple type K. Both of these sensors can be purchased at Metro.

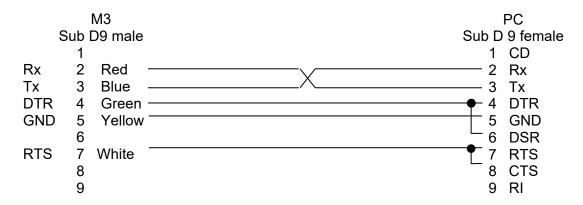

13. FACTORY RESET

This function allows to come back to the factory setting.

Warning: At the end of this procedure, all the parameters of your M3 will be reset (tolerances, masters, formulas...)

To Reset the M3 to its factory settings, please follow the process bellow.

- 1 Shut down the M3
- 2 Start the M3
- 3 When the splash screen appears, press on the Metro logo
- 4 A desktop with 3 icons appear.
 - 4a Press on « initialization »
 - 4b Confirm YES or cancel NO
- 5 Press Home to come back to the measuring screen

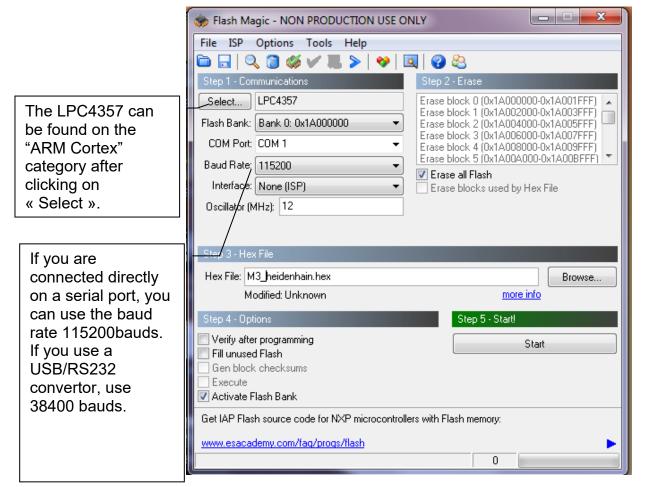

14. FIRMWARE UPDATE

It is possible to update the M3 firmware

For this you need a RS232 cable ref 18060.

It is possible to use a RS232/USB convertor if your computer is not equipped with a serial port.

If you do not have a Metro cable ref 18060, you can make your own cable by following this schematic



The firmware update requires to use the « flash magic » software that can be download (free) from this address:

www.flashmagictools.com

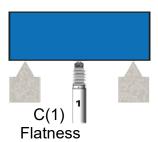
After installation, please configure the software on the following way:

Procedure:

- 1 Connect the M3 with the cable Metro ref 18060 to the computer
- 2 Start the M3
- 3 Configure the flash magic software according to the above picture.
- 4 Click on "Start"

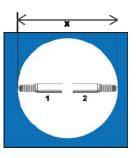
It takes from 2 to 5 min depending on the Baud rate selected. During the update, the screen becomes blurred.

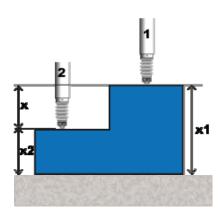
- 5- The M3 restart automatically when it is finished.
- 6- Reset the M3 by following the procedure on the chapter 11.



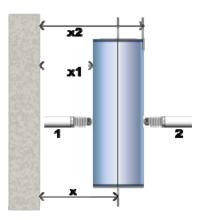
15. EXEMPLES OF PROBE COMBINATIONS

15.1. SIMPLE MEASUREMENTS WITH ONE PROBE

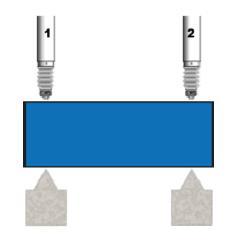

C(1) Thickness


15.2. COMBINED MEASUREMENTS WITH TWO PROBES

C(1) +C(2)
Thickness or external diameter



-C(1)-C(2) Width or internal diameter


$$X1 = C(1)$$

 $X2 = C(2)$
 $X = C(1)-C(2)$

Thrust

Position

Parallelism

X= C(1) -C(2)